Skip to main content

Advertisement

Log in

Microstructures and Mechanical Properties of Dental Co-Cr-Mo-W Alloys Fabricated by Selective Laser Melting at Different Subsequent Heat Treatment Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To apply the dental Co-Cr-Mo-W alloy restorations fabricated by selective laser melting to clinical use cases, it is necessary to perform a subsequent heat treatment (HT) after SLM processing. However, investigations regarding the effects of HT temperatures on microstructures and mechanical properties inherent in SLM-manufactured Co-Cr-Mo-W alloys are still insufficient. In this article, the microstructure variation during HT at different temperatures and its effect on mechanical properties were systematically investigated and discussed. The Co-Cr-Mo-W dental alloys fabricated by SLM were heat treated at 750 °C, 850 °C, 950 °C, 1050 °C, and 1150 °C for 1 hour and subsequently air cooled. Then, the microstructures were characterized and the mechanical properties evaluated. The results showed that, during HT, Co3(Mo, W)2Si intermetallic compounds with hcp crystal structures precipitated in specimen matrixes and at grain boundaries. With heat treatment temperatures increasing from 750 °C to 950 °C, the number of precipitates gradually increased, and the volume gradually grew. When the temperature increased to ≥ 1050 °C, the number of intermetallic compounds decreased. On the other hand, with increasing HT temperatures, the content of ε-Co phases increased initially but then dropped, reaching a maximum of 97.5 pct at 950 °C and a minimum of 4.4 pct at 1150 °C. Furthermore, there is a coherent relationship between hcp phases (ε-Co) and fcc phases (γ-Co), and the two lattice cells allow the relative orientation of {0001}ε//{111}γ, 〈11-20〉ε //〈110〉γ. Mechanical test results showed that, with increasing HT temperatures, the 0.2 pct yield strength (0.2 pctYS) and ultimate tensile strength (UTS) increased initially and then dropped, reaching a maximum value at 850 °C. Conversely, the ductility decreased initially and then rose, reaching a minimum at 850 °C and 950 °C. The mechanical properties depended primarily on the change of volume fractions of the ε-Co in mixture as well as the size, morphology, and distribution of precipitates. Additionally, specimens heat-treated at 1050 °C for 1 hour were superior to as-SLM (AS) specimens in both strength and ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Vandenbroucke and J. Kruth, Rapid prototyping j., 2007, vol. 13, pp. 196-203.

    Article  Google Scholar 

  2. B. Qian, K. Saeidi and L. Kvetková, Dent. Mater., 2015, vol. 31, pp. 1435-1444.

    Article  CAS  Google Scholar 

  3. Yamanaka K., Mori M., Koizumi Y. and Chiba A., J. Mech. Behav. Biomed. Mater., 2014, vol. 32, pp. 52–61.

    Article  CAS  Google Scholar 

  4. A. Marti, Injury, 2000, vol. 31, pp. 18-21.

    Article  Google Scholar 

  5. A. Karaali, K. Mirouh, S. Hamamda, and P. Guiraldenq, Comp. Mater. Sci., 2005, vol. 33, pp. 37-43.

    Article  CAS  Google Scholar 

  6. D. Myszka, and M. Skrodzki, Arch. Foundry Eng., 2016, vol. 16, pp. 201-207.

    Article  CAS  Google Scholar 

  7. Y. Ucar, T. Akova, M.S. Akyil and W.A. Brantley, J. Prosthet. Dent., 2009, vol. 102, pp. 253–259.

    Article  CAS  Google Scholar 

  8. N. Xiang, X. Xin, J. Chen, and B. Wei, J. Dent., 2012, vol. 40, pp. 453-457.

    Article  CAS  Google Scholar 

  9. X. Xin, J. Chen, N. Xiang, Y. Gong, and B. Wei, Dent. Mater., 2014, vol. 30, pp. 263-270.

    Article  CAS  Google Scholar 

  10. Koutsoukis T., Zinelis S., Eliades G., Al-Wazzan K., Al-Rifaily M. and Jabbari Y.S., J. Prosth., 2015, vol. 24, pp. 303–312.

    Article  Google Scholar 

  11. Y. Lu, S. Wu, Y. Gan, S. Zhang, S. Guo, J. Lin, and J. Lin, J. Mech. Behav. Biomed. Mater., 2016, vol. 55, pp. 179-190.

    Article  CAS  Google Scholar 

  12. Zhou X., Li K. and Zhang D., J. Alloy Compd., 2015, vol. 631, pp. 153-164.

    Article  CAS  Google Scholar 

  13. Y. Hed-berg, I. Odnevall-Wallinder, J. Biomed. Mater. Res., 2014, vol. 102, pp. 693–699.

    Article  Google Scholar 

  14. X. Xian-zhen, X. Nan, C. Jie, X. Dan, and W. Bin, J. Mater. Sci. 2012, vol. 47, pp. 13-20.

    Google Scholar 

  15. W. Wei, Y. Zhou, W. Liu, N. Li, J. Yan, and H. Li, J. Mater. Eng. Perform., 2018, vol. 27, pp. 5312-5320.

    Article  CAS  Google Scholar 

  16. Takaichi A., Nakamoto T., J. Mech. Behav. Biomed. Mater., 2013, vol. 21, pp. 67-76.

    Article  CAS  Google Scholar 

  17. Lu Y., Wu S., Gan Y., Li J., Zhao C., Zhuo D., Mater. Sci. Eng. C, 2015, vol. 49, pp. 517-525.

    Article  CAS  Google Scholar 

  18. Y. Zhou, W. Wei, J. Yan, W. Liu, N. Li, H. Li, and S. Xu, Mater. Sci. Eng. A, 2019, vol. 759, pp. 594-602.

    Article  CAS  Google Scholar 

  19. W.E. Frazier, J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–1928.

    Article  CAS  Google Scholar 

  20. M. Zhang, Y. Yang, C. Song, Y. Bai, and Z. Xiao, J. Alloy Compound, 2018, vol. 750, pp. 878-886.

    Article  CAS  Google Scholar 

  21. Y. Kajima, A. Takaichi, N. Kittikundecha, T. Nakamoto, T. Kimura, N. Nomura, A. Kawasaki, T. Hanawa, H. Takahashi, and N. Wakabayashi, Mater. Sci. Eng. A, 2018, vol. 726, pp. 21-31.

    Article  CAS  Google Scholar 

  22. P. Mengucci, G. Barucca, A. Gatto, E. Bassoli, L. Denti, F. Fiori, E. Girardin, P. Bastianoni, B. Rutkowski, and A. Czyrska-Filemonowicz, J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 106-117.

    Article  CAS  Google Scholar 

  23. C. Balagna, S. Spriano, and M.G. Faga, Mater. Sci. Eng. C, 2012, vol. 32, pp. 1868-1877.

    Article  CAS  Google Scholar 

  24. H. R. Lashgari, S. Zangeneh, F. Hasanabadi, and M.Saghafi. Mater. Sci. Eng. A, 2010, vol. 527, pp. 4082-4091.

    Article  Google Scholar 

  25. M. Mori, K. Yamanaka and A. Chiba, J. Alloy Compound, 2014, vol. 590, pp. 411-416.

    Article  CAS  Google Scholar 

  26. C. Montero-Ocampo, R. Juarez, A.S. Rodriguez, Metall. Mater. Trans. A, 2002, vol. 33, pp. 2229-2235.

    Article  CAS  Google Scholar 

  27. K. Yoda, A. Takaichi, N. Nomura, Y. Tsutsumi, H. Doi, S. Kurosu, A. Chiba, Y. Igarashi, and T. Hanawa, Acta Biomater., 2012, vol. 8, pp. 2856-62.

    Article  CAS  Google Scholar 

  28. S.H. Lee, N. Nomura and A. Chiba, Mater. Trans., 2007, vol. 48, pp. 2207–2211.

    Article  CAS  Google Scholar 

  29. K. Yamanaka, M. Mori and A. Chiba, Mater. Sci. Eng. A, 2011, vol. 528, pp. 5961–5966.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhen Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Zhou, Y., Sun, Q. et al. Microstructures and Mechanical Properties of Dental Co-Cr-Mo-W Alloys Fabricated by Selective Laser Melting at Different Subsequent Heat Treatment Temperatures. Metall Mater Trans A 51, 3205–3214 (2020). https://doi.org/10.1007/s11661-020-05719-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05719-y

Navigation