Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Vacuum Brazed NbSS/Nb5Si3 Composite Joints Using Ni-Based Filler Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Vacuum brazing of NbSS/Nb5Si3 composite was performed with BNi2 and BNi5 filler alloys at 1293-1423 K for 1800 seconds. The joint microstructures were examined by a scanning electron microstructure (SEM) equipped with an X-ray energy-dispersive spectrometer (XEDS), and shear test for the brazed joints was conducted at room temperature. The NbSS/Nb5Si3 joint brazed with BNi2 filler alloy at 1293 K mainly consisted of Ni3Si + Nb3Si, NiSS and borides. As the brazing temperature increased to 1423 K, Cr2Nb and NbNi phases were formed and the shear strength of the joints was increased from 180 to 253 MPa. Concerning the joints brazed with BNi5 filler at 1423 K, they exhibited an average strength of 274 MPa, and the joint micro-hardness was lower than BNi2 filler. The BNi5 filler alloy not only raised the shear strength but also decreased the joint brittleness to some extent. As a new finding in this study, 4-5 at. pct Ni had been dissolved into (Nb,Ti)SS in the NbSS/Nb5Si3 composite, providing a new insight into the design of novel specific filler material for NbSS/Nb5Si3 joining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. [1] B.P. Bewlay, J.J. Lewandowksi, and M.R. Jackson: JOM, 1997, vol. 49, pp. 44-45.

    Article  CAS  Google Scholar 

  2. [2] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, and J.J. Lewandowski: MRS Bull., 2003, vol. 28, pp. 646-653.

    Article  CAS  Google Scholar 

  3. [3] J.H. Kim, T. Tabaru, M. Sakamoto, and S. Hanada: Mater. Sci. Eng. A, 2004, vol. 372, pp. 137-144.

    Article  Google Scholar 

  4. [4] Gang F, Kauffmann A, and Heilmaier M: Metall. Mater. Trans. A, 2018, vol. 49, pp. 763-771.

    Article  Google Scholar 

  5. W. Liu, H. P. Xiong, N. Li, S.Q. Guo, and R. Y. Qin: Acta Metall. Sin. Engl. Lett., 2018, vol. 31, pp. 362-370.

    Article  CAS  Google Scholar 

  6. [6] Y.W. Kang, Y.C. Yan, J.X. Song, and H.S. Ding: Mater. Sci. Eng. A, 2014, vol. 599, pp. 87-91.

    Article  CAS  Google Scholar 

  7. [7] Y. Tang, and X. Guo: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4884-4894.

    Article  Google Scholar 

  8. [8] C.L. Yeh, and W.H. Chen: J. Alloys Compd., 2005, vol. 402, pp. 118-123.

    Article  CAS  Google Scholar 

  9. [9] J.L. Yu, K.F. Zhang, Z.K. Li, X. Zheng, G.F. Wang, and R. Bai: Scr. Mater., 2009, vol. 61, pp. 620-623.

    Article  CAS  Google Scholar 

  10. [10] Y.W. Kang, S.Y. Qu, J.X. Song, Q. Huang, and Y.F. Han: Mater. Sci. Eng. A, 2012, vol. 534, pp. 323-328.

    Article  CAS  Google Scholar 

  11. [11] G.M. Cheng, Y.X. Tian, L.L. He, and J.T. Guo: Philos. Mag., 2009, vol. 89, pp. 2801-2812.

    Article  CAS  Google Scholar 

  12. [12] J.L. Yu, and K.F. Zhang: Scr. Mater., 2008, vol. 59, pp. 714-717.

    Article  CAS  Google Scholar 

  13. [13] L. N. Jia, and H. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1295-1303.

    Article  Google Scholar 

  14. [14] D. Liu, Y.Y. Song, B. Shi, Q. Zhang, X.G. Song, H.W. Niu, and J.C. Feng: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1843-1850.

    Article  Google Scholar 

  15. [15] W.W. Li, B. Chen, Y. Xiong, H.P. Xiong, Y.Y. Cheng, and W.J. Zou: J. Mater. Sci. Technol., 2017, vol. 5, pp. 487-491.

    Article  Google Scholar 

  16. [16] R.F. Li, Z.S. Yu, and K. Qi: Adv. Mater. Res., 2013, vol. 602, pp. 2087-2091.

    Google Scholar 

  17. [17] A.R. Miedema, F.R. De Boer, and R. Boom: Calphad, 1977, vol. 1, pp. 341-359.

    Article  CAS  Google Scholar 

  18. [18] J.S.C. Jang, and H.P. Shih: J. Mater. Sci. Lett., 2003, vol. 22, pp. 79-82.

    Article  CAS  Google Scholar 

  19. [19] J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20-29.

    Article  CAS  Google Scholar 

  20. [20] J. Geng, P. Tsakiropoulos, and G.S. Shao: Intermetallics, 2007, vol. 15, pp. 69-76.

    Article  CAS  Google Scholar 

  21. [21] X.J. Yuan, C.Y. Kang, and M.B. Kim: Mater. Charact., 2009, vol. 60, pp. 923-931.

    Article  CAS  Google Scholar 

  22. [22] M.A. Arafin, M. Medraj, D.P. Turner, and P. Bocher: Mater. Chem. Phys., 2017, vol. 106, pp. 109-119.

    Article  Google Scholar 

  23. [23] M.A. Arafin, M. Medraj, D.P. Turner, and P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 125-133.

    Article  Google Scholar 

  24. [24] Z. Chen, and Y.W. Yan: J. Alloys Compd., 2006, vol. 413, pp. 73-76.

    Article  CAS  Google Scholar 

  25. [25] Y. Luo, W.C. Jiang, Y.C. Zhang, M.M. Hao, and S.T. Tu: Mater. Sci. Eng. A, 2018, vol. 711, pp. 223-232.

    Article  CAS  Google Scholar 

  26. [26] Deardorff, D. K., Siemens, R. E., Romans, P. A., and McCune, R. A: J. Less-Common Met., 1969, vol. 18, pp. 11-26.

    Article  CAS  Google Scholar 

  27. [27] Y.X. Tian, J.T. Guo, L.Y. Sheng, G.M. Cheng, L.Z. Zhou, L.L. He, and H.Q. Ye: Intermetallics, 2008, vol. 16, pp. 807-812.

    Article  CAS  Google Scholar 

  28. [28] M.M. Verdian, K. Raeissi, and M. Salehi: Appl. Surf. Sci., 2012, vol. 261, pp. 493-498.

    Article  CAS  Google Scholar 

  29. [29] S. Milenkovic, and R. Caram: J. Cryst. Growth, 2002, vol. 237, pp. 95-100.

    Article  Google Scholar 

  30. [30] V. Jalilvand, H. Omidvar, H.R. Shakeri, and M.R. Rahimipour: Mater. Charact., 2013, vol. 75, pp. 20-28.

    Article  CAS  Google Scholar 

  31. [31] Vignoul G. E., Tien J. K., and Sanchez J. M: Mater. Sci. Eng. A, 1993, vol. 170, pp. 177-183.

    Article  Google Scholar 

  32. [32] J Chen, V Demers, D.P. Turner, and P Bocher: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1244-1253.

    Article  CAS  Google Scholar 

  33. [33] Furuya, H.S., Sato, Y.S., Kokawa, H., Huang, T., and Xiao, R. S: Metall. Mater. Trans. A, 2018, vol. 49, pp. 6215-6223.

    Article  Google Scholar 

  34. [34] H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, and L. Ye: J. Mater. Sci. Technol., 2016, vol. 32, pp. 372-380.

    Article  Google Scholar 

  35. N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, and J. Blackburn: J. Mater. Sci. Technol., 2019, vol. 35, pp. 242–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 3, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X.Y., Xiong, H.P., Kang, Y.W. et al. Microstructure and Mechanical Properties of Vacuum Brazed NbSS/Nb5Si3 Composite Joints Using Ni-Based Filler Alloys. Metall Mater Trans A 50, 5181–5190 (2019). https://doi.org/10.1007/s11661-019-05435-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05435-2

Navigation