Skip to main content

Advertisement

Log in

Thermal Conductivity Analysis of Compacted Graphite Cast Iron After a Creep Test

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thermal conductivity of compacted graphite cast iron (CGI) after creep test (temperature ranging from 350 °C to 550 °C; stress ranging from 40 to 150 MPa) was measured at different testing temperatures (200 °C to 550 °C) in an argon atmosphere. The thermal conductivity increased slightly when the creep temperature increased from 350 °C to 500 °C under 150 MPa and then decreased dramatically when the creep temperature surpassed 500 °C. When the creep temperature was 550 °C, the thermal conductivity initially decreased slightly, and then decreased dramatically when the stress surpassed 100 MPa. Crack propagation was the main cause of the decrease in the thermal conductivity, which was related to interphase debonding between the graphite and matrix, and grain boundary sliding. Interphase debonding was related to the creep temperature and stress. Compared to the creep stress, the creep temperature played an important role in the interphase debonding between the graphite and matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. S. Ghodrat, T.A.C. Riemslag, A.I. Kestens, J. Sietsma: Metall. Mater. Trans. A, 2013, vol. 44A(5), pp. 2121–30

    Article  Google Scholar 

  2. Guo Q, Yang Z, Tao D, Gao, P H, Guo, Y C, Li, J P. Journal of Alloys and Compounds, 2018,765:213-220

    Article  Google Scholar 

  3. T. Yang, Y.C. Guo, J.P. Li, Z.Z. Chen, W. Zhang: Foundry, 2008, vol. 57, pp. 270–73

    Google Scholar 

  4. Z. Yang, D. Tao, Y.C. Guo, T. Yang, J.P. Li: Foundry, 2014, vol. 63, pp. 115–19

    Google Scholar 

  5. [5] Wu Y, Li J, Yang Z, Guo Y C, Ma Z J, Liang M X, Yang T, Tao D. Chinese Journal of Materials Research, 2019,33(01):43-52.

    Google Scholar 

  6. [6] Ma Z J, Wen Q, Gao P H, Yang, Z, Guo, Y C, Li, J P, Liang, M X. International Journal of Cast Metals Research, 2018,31(4):230-236.

    Google Scholar 

  7. [7] Zhang Z F, Zhang Y Y, Pang J C, Shen, R L, Qiu, Y, Li, S X. Materials Science & Engineering A, 2018,713:260-268.

    Article  Google Scholar 

  8. S. Dawson: Foundry Technol., 2009, vol. 30, pp. 455–60

    Google Scholar 

  9. B. Fedelich, H. Kühn, B. Rehmer, B. Skrotzki: Int. J. Fatigue, 2017, vol. 99, pp. 266–78

    Article  Google Scholar 

  10. M.X. Zhang, J.C. Pang, Y. Qiu, S.X. Li, M. Wang, Z.F. Zhang: Mater. Sci. Eng. A, 2017, vol. 698, pp. 63–72.

    Article  Google Scholar 

  11. V. Norman, P. Skoglund, D. Leidermark, J. Moverare: Int. J. Fatigue, 2015, vol. 80, pp. 381–90

    Article  Google Scholar 

  12. M. Selin, M.K. Nig: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3235–44

    Article  Google Scholar 

  13. Qiu Y, Pang J C, Yang E N, Yang E N, Fu W Q, Liang M X, Zhang Z F: Mater. Sci. Eng. A, 2016, vol. 677, pp. 290-301

    Article  Google Scholar 

  14. D. Holmgren, K.R. Llbom, I.L. Svensson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 268–75

    Article  Google Scholar 

  15. R.L. Hecht, R.B. Dinwiddie, H. Wang: J. Mater. Sci., 1999, vol. 34, pp. 4775–78

    Article  Google Scholar 

  16. Ma Z J, Tao D, Yang Z, Guo, Y C, Li, J P. Materials and Design, 2016, vol. 93, pp. 418-422.

    Article  Google Scholar 

  17. Y. Liu, W. Li, Y. Li, J. Xing, S. Wang, B. Zheng, D. Tao: Mater. Charact., 2018, vol. 144, pp. 155–65

    Article  Google Scholar 

  18. D. Holmgren, A. Diószegi, I.L. Svensson: China Foundry, 2007, pp. 210–14.

  19. O. Maluf, M. Angeloni, D. Castro, W. Filho, D. Spinelli: J. Mater. Eng. Perform., 2009, pp. 980–84.

  20. Y. Wu, J. Li, Z. Yang, Z. Yang, Y.C. Guo, Z.J. Ma, M.X. Liang, D. Tao: Mater. Sci. Eng. A, 2018, vol. 723, pp. 174–81

    Article  Google Scholar 

  21. Ying T, Zheng M Y, Li Z T, Qiao X G, Xu S W. Journal of Alloys and Compounds, 2015, vol. 621, pp.250-255.

    Article  Google Scholar 

  22. Y. Wu, J.P. Li, Y.J. Zhang, Z. Yang, D. Tao, T. Yang: Trans. Mater. Heat Treat., 2017, vol. 38, pp. 143–51

    Google Scholar 

  23. M.C. Rukadikar and G.P. Reddy: J. Mater. Sci., 1986, vol. 21, pp. 4403–10.

    Article  Google Scholar 

  24. Y. Qiu, J.C. Pang, S.X. Li, E.N. Yang, W.Q. Fu, M.X. Liang, Z.F. Zhang: Mater. Sci. Eng. A, 2016, vol. 664, pp. 75–85

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support by Key Project of Equipment Pre-research Field Fund (6140922010301), Key Research Program of Shaanxi Provincial Department of Technology and Science (2018ZDXM-GY-137), Key Research and Development Plan of Shaanxi Province (2018GY-176), Shaanxi creative talents promotion plan-technological innovation team (2017KCT-05), and National Basic Science Development Foundation of China (61322402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jianping.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, W., Jianping, L., Zhong, Y. et al. Thermal Conductivity Analysis of Compacted Graphite Cast Iron After a Creep Test. Metall Mater Trans A 50, 3697–3704 (2019). https://doi.org/10.1007/s11661-019-05278-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05278-x

Navigation