Skip to main content
Log in

Influence of Rotation Speed on Microstructure and Mechanical Properties of Friction Stir Lap Welded Joints of AA 6061 and Ti6Al4V Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three-mm-thick AA 6061 plate and 2-mm-thick Ti6Al4V plate were friction stir lap welded using a W-Re pin tool. Defect-free joints were obtained at various rotation speeds ranging from 800 to 1400 rpm with a constant welding speed of 100 mm/min. The influence of rotation speed on the microstructure and mechanical properties of the Al/Ti friction stir lap welding (FSLW) joints was investigated. At low rotation speed within 1000 rpm, the obtained joint has no obvious mechanical Al/Ti intermixing at the interface. However, a significant mechanical mixture of Al and Ti alloys accompanied by hooks could be found in the joint welded at a rotation speed over 1000 rpm. Only diffusion layer was observed in the joint obtained at low rotation speed. Further, IMCs could be found in the Al/Ti mixture and hook when the rotation speed increased to 1400 rpm. The highest microhardness was measured at the interface due to the formation of IMCs. The tensile shear load of the welded joints reached the maximum at 1000 rpm and the specimens failed along the interface during the test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Simoncini and A. Forcellese: Mater. Des., 2012, vol. 41, pp. 50–60.

    Article  Google Scholar 

  2. K. Michael, W. Florian, and V. Frank: Opt. Las. Eng., 2005, vol. 43, pp. 1021–35.

    Article  Google Scholar 

  3. S.X. Lv, Q.L. Cui, X.J. Huang, and X.J. Jing: Mater. Sci. Eng. A, 2013, vol. 568, pp. 150–54.

    Article  Google Scholar 

  4. S.H. Chen, L.Q. Li, Y.B. Chen, and D.J. Liu: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 64–70.

    Article  Google Scholar 

  5. S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, and C.H. Huang: J. Mater. Process. Technol., 2012, vol. 212, pp. 8–14.

    Article  Google Scholar 

  6. A.N. Alhazaa and T.I. Khan: J. Alloys Compds., 2010, vol. 494, pp. 351–58.

    Article  Google Scholar 

  7. S.Q. Wang, V.K. Patel, S.D. Bhole, G.D. Wen, and D.L. Chen: Mater. Des., 2015, vol. 78, pp. 33–41.

    Article  Google Scholar 

  8. C.Q. Zhang, J.D. Robson, and P.B. Prangnell: J. Mater. Process. Technol., 2016, vol. 231, pp. 382–88.

    Article  Google Scholar 

  9. M. Aonuma and K. Nakata: Mater. Trans., 2011, vol. 52, pp. 948–52.

    Article  Google Scholar 

  10. A. Wu, Z. Song, K. Nakata, J. Liao, and L. Zhou: Mater. Des., 2015, vol. 71, pp. 85–92.

    Article  Google Scholar 

  11. B. Li, Z. Zhang, Y. Shen, W. Hu, and L. Luo: Mater. Des., 2014, vol. 53, pp. 838–48.

    Article  Google Scholar 

  12. K.S. Bang, K.J. Lee, H.S. Bang, and H.S. Bang: Mater. Trans., 2011, vol. 52, pp. 974–78.

    Article  Google Scholar 

  13. Y.C. Chen and K. Nakata: Mater. Des., 2009, vol. 30, pp. 469–74.

    Article  Google Scholar 

  14. Y.H. Chen, Q. Ni, and L.M. Ke: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 299–304.

    Article  Google Scholar 

  15. B. Li, Y. Shen, L. Luo, W. Hu, and Z. Zhang: Mater. Des., 2013, vol. 49, pp. 647–56.

    Article  Google Scholar 

  16. Z.W. Chen and S. Yazdanian: Mater. Sci. Eng.: A, 2015, vol. 634, pp. 37–45.

    Article  Google Scholar 

  17. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng.: R: Rep., 2005, vol. 50, pp. 13–58.

  18. D.G. Sanders, P. Edwards, A.M. Cantrell, K. Gangwar, and M. Ramulu: JOM, 2015, 67 (5), pp. 1054–62.

    Article  Google Scholar 

  19. R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Eng. R, 1993, vol. 10 (1–2), pp. 61–83.

    Google Scholar 

  20. Q.J. Sun, J.Z. Li, Y.B. Liu, B.P. Li, P.W. Xu, and J.C. Feng: Mater. Des., 2017, vol. 116, pp. 316–24.

    Article  Google Scholar 

  21. ASM International (1990) Binary Alloy Phase Diagrams. ASM International, Novelty, p. 233.

    Google Scholar 

  22. L. Cui, X. Yang, G. Zhou, X. Xu, and Z. Shen: Mater. Sci. Eng.: A, 2012, vol. 543, pp. 58–68.

    Article  Google Scholar 

  23. M. Pourali, A. Abodollah-zadeh, T. Saeid, and F. Kargar: J. Alloys Compds., 2017, vol. 715, pp. 1–8.

    Article  Google Scholar 

  24. Q. Zhang, X. Feng, Y. Shen, G. Huang, and P. Zhao: J. Alloys Compds., 2017, vol. 695, pp. 952–61.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of this research from the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2016EEM43), and the Pre-research Project for General Technology of Weapons and Equipment (Grant No. 41423050101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyun Zhao or Yongxian Huang.

Additional information

Manuscript submitted December 25, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Yu, M., Jiang, Z. et al. Influence of Rotation Speed on Microstructure and Mechanical Properties of Friction Stir Lap Welded Joints of AA 6061 and Ti6Al4V Alloys. Metall Mater Trans A 50, 733–745 (2019). https://doi.org/10.1007/s11661-018-5052-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5052-y

Navigation