Skip to main content
Log in

Understanding the High Strength and Good Ductility in LPSO-Containing Mg Alloy Using Synchrotron X-ray Diffraction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mg alloys containing long-period stacking-ordered (LPSO) phases often display excellent mechanical properties. The underlying mechanism is yet unclear. In this work, in situ synchrotron X-ray diffraction was employed to study tensile deformation of a Mg97Y2Zn alloy that contains 18R-type LPSO phase. From lattice strain measurement, it is found that the LPSO phase has a similar elastic modulus as Mg. After material yielding, lattice strain in the Mg phase decreased, while lattice strain in the LPSO phase increased further. By analyzing the lattice strain evolution of different Mg peaks, basal slip and deformation twinning are identified as the dominant deformation mechanisms. This finding is further confirmed by surface slip trace analysis using electron backscattered diffraction (EBSD). Additional analysis of diffraction peak broadening indicates a continuous increase of dislocation density during plastic deformation. Based on the above results, it can be concluded that the interdendritic LPSO phase behaves like a reinforcing phase that directly strengthens the material. The high tensile ductility of the material is attributed to the weak extrusion texture caused by the presence of interdendritic LPSO. In addition, small LPSO plates inside the Mg phase can serve as dislocation nucleation sites, which leads to a high work hardening rate in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37-45.

    Article  Google Scholar 

  2. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans., 2001, vol. 42, pp. 1172-76.

    Article  CAS  Google Scholar 

  3. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi and J. Koike: J. Mater. Res., 2001, vol. 16, pp. 1894-1900.

    Article  CAS  Google Scholar 

  4. D. Egusa and E. Abe: Acta Mater., 2012, vol. 60, pp. 166-78.

    Article  CAS  Google Scholar 

  5. Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936-47.

    Article  CAS  Google Scholar 

  6. E. Abe, Y. Kawamura, K. Hayashi, and A. Inoue: Acta Mater., 2002, vol. 50, pp. 3845-57.

    Article  CAS  Google Scholar 

  7. X.H. Shao, Z.Q. Yang, and X.L. Ma: Acta Mater., 2010, vol. 58, pp. 4760-71.

    Article  CAS  Google Scholar 

  8. K. Hagihara, N. Yokotani, and Y. Umakoshi: Intermetallics, 2010, vol. 18, pp. 267-76.

    Article  CAS  Google Scholar 

  9. J.K. Kim, S. Sandlöbes, and D. Raabe: Acta Mater., 2015, vol. 82, pp. 414-23.

    Article  CAS  Google Scholar 

  10. R. Chen, S. Sandlöbes, X.Q. Zeng, D.J. Li, S. Korte-Kerzel, and D. Raabe: Mater. Sci. Eng. A, 2017, vol. 682, pp. 354-58.

    Article  CAS  Google Scholar 

  11. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, and Y. Umakoshi: Acta Mater., 2010, vol. 58, pp. 6282-93.

    Article  CAS  Google Scholar 

  12. M. Yamasaki, K. Hagihara, S.I. Inoue, J.P. Hadorn, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 2065-76.

    Article  CAS  Google Scholar 

  13. M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646-58.

    Article  CAS  Google Scholar 

  14. K. Hagihara, M. Yamasaki, M. Honnami, H. Izuno, M. Tane, T. Nakano, and Y. Kawamura: Philos. Mag., 2015, vol. 95, pp. 132-57.

    Article  CAS  Google Scholar 

  15. M. Okayasu, S. Takeuchi, M. Matsushita, N. Tada, M. Yamasaki, and Y. Kawamura: Mater. Sci. Eng. A, 2016, vol. 652, pp. 14-29.

    Article  CAS  Google Scholar 

  16. X.H. Shao, Z.Z. Peng, Q.Q. Jin, and X.L. Ma: Acta Mater., 2016, vol. 118, pp. 177-86.

    Article  CAS  Google Scholar 

  17. H. Liu, J. Bai, K. Yan, J.L. Yan, A.B. Ma, and J.H. Jiang: Mater. Des., 2016, vol. 93, pp. 9-18.

    Article  CAS  Google Scholar 

  18. W. Liu, J.S. Zhang, C.X. Xu, X.M. Zong, J.Q. Hao, Y. Li, and Z. Zhang: Mater. Des., 2016, vol. 110, pp. 1-9.

    Article  CAS  Google Scholar 

  19. P. Willmott: An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, New York, 2011.

    Book  Google Scholar 

  20. L.Y. Wang, M.M. Li, J. Almer, T. Bieler, and R. Barabash: Front. Mater. Sci., 2013, vol. 7, pp. 156-69.

    Article  Google Scholar 

  21. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, and D.C. Dunand: Acta Mater., 2007, vol. 55, pp. 1999-2011.

    Article  CAS  Google Scholar 

  22. M.A. Weisser, A.D. Evans, S.V. Petegem, S.R. Holdsworth, and H.V. Swygenhoven; Acta Mater., 2011, vol. 59, pp. 4448-57.

    Article  CAS  Google Scholar 

  23. L.Y. Wang, M.M. Li, and J. Almer: J. Nucl. Mater., 2013, vol. 440, pp. 81-90.

    Article  CAS  Google Scholar 

  24. S.R. Kada, P.A. Lynch, J.A. Kimpton, and M.R. Barnett: Acta Mater., 2016, vol. 119, pp. 145-56.

    Article  CAS  Google Scholar 

  25. Y.B. Miao, K. Mo, Z.J. Zhou, X. Liu, K. Lan, G.M. Zhang, J. Park, J. Almer, and J.F. Stubbins: Mater. Des., 2016, vol. 111, pp. 622-30.

    Article  CAS  Google Scholar 

  26. G. Garces, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, and P. Adeva: Acta Mater., 2015, vol. 94, pp. 78-86.

    Article  CAS  Google Scholar 

  27. S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer: Acta Mater., 2006, vol. 54, pp. 549-62.

    Article  CAS  Google Scholar 

  28. M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic: Acta Mater., 2015, vol. 86, pp. 254-68.

    Article  CAS  Google Scholar 

  29. L. Lu, J.W. Huang, D. Fan, B.X. Bie, T. Sun, K. Fezzaa, X.L. Gong, and S.N. Luo: Acta Mater., 2016, vol. 120, pp. 86-94.

    Article  CAS  Google Scholar 

  30. K. Máthis, K. Nyilas, A. Axt, I. Dragomir-Cernatescu, T. Ungár, and P. Lukáč: Acta Mater., 2004, vol. 52, pp. 2889-94.

    Article  Google Scholar 

  31. T. Ungár, A.D. Stoica, G. Tichy, and X.L. Wang: Acta Mater., 2014, vol. 66, pp. 251-61.

    Article  Google Scholar 

  32. L.Y. Wang, M.M. Li, and J. Almer: Acta Mater., 2014, vol. 62, pp. 239-49.

    Article  CAS  Google Scholar 

  33. M.M. Li, L.Y. Wang, and J.D. Almer: Acta Mater., 2014, vol. 76, pp. 381-93.

    Article  CAS  Google Scholar 

  34. T.R. Bieler, M.A. Crimp, Y. Yang, L. Wang, P. Eisenlohr, D.E. Mason, W. Liu, and G.E. Ice: JOM, 2009, vol. 61, pp. 45-52.

    Article  CAS  Google Scholar 

  35. T.Y. Yang, W. Wen, G.Z. Yin, X.L. Li, M. Gao, Y.L. Gu, L. Li, Y. Liu, H. Lin, X.M. Zhang, B. Zhao, T.K. Liu, Y.G. Yang, Z. Li, X.T. Zhou, and X.Y. Gao: Nucl. Sci. Tech., 2015, vol. 26, pp. 1-5.

    Google Scholar 

  36. H. Okuda, T. Horiuchi, S. Hifumi, M. Yamasaki, Y. Kawamura, and S. Kimura, Metall. Mater. Trans. A, 2014, vol. 45, pp. 4780-85.

    Article  CAS  Google Scholar 

  37. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313-26.

    Article  CAS  Google Scholar 

  38. Natl. Bur. Stand. (U. S.) Monogr. 25, 1985, Section 21, pp. 82.

  39. G. Garces, P. Perez, S. Cabeza, S. Kabra, W. Gan, and P. Adeva: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5332-43.

    Article  CAS  Google Scholar 

  40. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University, Cambridge, 2016, pp. 381-88.

    Google Scholar 

  41. M. Tane, Y. Nagai, H. Kimizuka, K. Hagihara, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 6338-51.

    Article  CAS  Google Scholar 

  42. L. Wang, Y. Yang, P. Eisenlohr, T.R. Bieler, M.A. Crimp, and D.E. Mason: Metall. Mater. Trans. A, 2010, vol. 41, pp. 421-30.

    Article  CAS  Google Scholar 

  43. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  CAS  Google Scholar 

  44. T. Ungar and G. Tichy: Phys. Stat. Sol. A, 1999, vol. 171, pp. 425-34.

    Article  CAS  Google Scholar 

  45. Y. Wang and H. Choo: Acta Mater., 2014, vol. 81, pp. 83-97.

    Article  CAS  Google Scholar 

  46. C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado: Acta Mater., 2015, vol. 84, pp. 443-56.

    Article  Google Scholar 

  47. S. Sandlöbes, S. Zaefferer, I. Schestakow, S. Yi, and R. Gonzalez-Martinez: Acta Mater., 2011, vol. 59, pp. 429-39.

    Article  Google Scholar 

  48. Z. Huang, L. Wang, B. Zhou, T. Fischer, S. Yi, and X. Zeng: Scripta Mater., 2018, vol. 143, pp. 44-48.

    Article  CAS  Google Scholar 

  49. J.J. Bhattacharyya, F. Wang, N. Stanford, and S.R. Agnew: Acta Mater., 2018, vol. 146, pp. 55-62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (No. 2016YFB0701203) and the National Natural Science Foundation of China (Nos. 51631006, 51474149, and 51671127). Leyun Wang is also sponsored by Shanghai Pujiang Program (No 16PJ1404600). The authors thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time and helps during experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leyun Wang or Xiaoqin Zeng.

Additional information

Manuscript submitted March 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Zhu, G. et al. Understanding the High Strength and Good Ductility in LPSO-Containing Mg Alloy Using Synchrotron X-ray Diffraction. Metall Mater Trans A 49, 5382–5392 (2018). https://doi.org/10.1007/s11661-018-4881-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4881-z

Navigation