Skip to main content

Advertisement

Log in

Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ′ to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.H. Thornton, R.G. Davies, and T.L. Johnston: Metall. Trans., 1970, vol. 1, pp. 207-218.

    Google Scholar 

  2. P.P. Swu-Jian Liang: Acta Mater., 1976, vol. 25, pp. 485–93.

    Article  Google Scholar 

  3. P.B. Hirsch: Philos. Mag. A, 1992, vol. 65, pp. 569–612.

    Article  Google Scholar 

  4. D.P. Pope and V. Vitek: Acta Mater., 1984, vol. 32, pp. 435–48.

    Article  Google Scholar 

  5. T.M. Smith, R.R. Unocic, H. Deutchman, and M.J. Mills: Mater. High Temp., 2016, vol. 33, pp. 372–83.

    Article  Google Scholar 

  6. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater. Sci., 2009, vol. 54, pp. 839–73.

    Article  Google Scholar 

  7. D.M. Knowles and Q.Z. Chen: Mater. Sci. Eng. A, 2003, vol. 340, pp. 88–102.

    Article  Google Scholar 

  8. R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills: Acta Mater., 2011, vol. 59, pp. 7325–39.

    Article  Google Scholar 

  9. B.H. Kear, A.F. Giamei, G.R. Leverant, and J.M. Oblak: Scr. Metall., 1969, vol. 3, pp. 455–60.

    Article  Google Scholar 

  10. B.H. Kear, J.M. Oblak, and A.F. Giamei: Metall. Trans., 1970, vol. I, pp. 2477–86.

    Google Scholar 

  11. M. Kolbe: Mater. Sci. Eng., 2001, vol. 319, pp. 383-387.

    Article  Google Scholar 

  12. L. Kovarik, R.R. Unocic, J. Li, and M.J. Mills: JOM, 2009, vol. 61, pp. 42–8.

    Article  Google Scholar 

  13. V.A. Vorontsov, L. Kovarik, M.J. Mills, and C.M.F. Rae: Acta Mater., 2012, vol. 60, pp. 4866–78.

    Article  Google Scholar 

  14. Y. Rao, T.M. Smith, M.J. Mills, and M. Ghazisaeidi: Acta Mater., 2018, vol. 148, pp. 173-184.

    Article  Google Scholar 

  15. D. Qi, D. Wang, K. Du, Y. Qi, L. Lou, J. Zhang, and H. Ye: J. Alloys Compd., 2018, vol. 735, pp. 813–20.

    Article  Google Scholar 

  16. M. Condat and B. Decamps: Scr. Metall., 1987, vol. 21, pp. 607–12.

    Article  Google Scholar 

  17. P. Caron, T. Khan, and P. Veyssiere: Philos. Mag. A, 1988, vol. 57, pp. 859–75.

    Article  Google Scholar 

  18. A. Varschavsky: Scr. Mater., 1975, vol. 9, pp. 391–8.

    Article  Google Scholar 

  19. S.J. Pennycook: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 171-95.

    Article  Google Scholar 

  20. G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, L. Kovarik, C.M.F. Rae, and M.J. Mills: Acta Mater., 2015, vol. 94, pp. 5-8.

    Google Scholar 

  21. M.S. Titus, A. Mottura, G.B. Viswanathan, A. Suzuki, J. Mills, and T.M. Pollock: Acta Mater., 2015, vol. 89, pp. 423–37.

    Article  Google Scholar 

  22. D. Barba, S. Pedrazzini, A. Vilalta-clemente, A.J. Wilkinson, M.P. Moody, and P.A.J. Bagot: Scr. Mater., 2017, vol. 127, pp. 37–40.

    Article  Google Scholar 

  23. T.M. Smith, Y. Rao, Y. Wang, M. Ghazisaeidi, and M.J. Mills: Acta Mater., 2017, vol. 141, pp. 261–72.

    Article  Google Scholar 

  24. L.P. Freund, O.M.D.M. Mess, J.S. Barnard, M. Goken, S. Neumeier, and C.M.F. Rae: Acta Mater., 2017, vol. 123, pp. 295–304.

    Article  Google Scholar 

  25. T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. McComb, and M.J. Mills: Acta Mater., 2015, vol. 100, pp. 19–31.

    Article  Google Scholar 

  26. T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, T. Hanlon, H.L. Fraser, W. Windl, D.W. McComb, and M.J. Mills: Nat. Commun., 2016, vol. 7, pp. 1-7.

    Google Scholar 

  27. C. Ophus and J. Ciston: Ultramicroscopy., 2016, vol. 162, pp. 1-9.

    Article  Google Scholar 

  28. P.J. Phillips, M.J. Mills, and M. De Graef: Philos. Mag., 2011, vol. 91, pp. 2081–101.

    Article  Google Scholar 

  29. V. Yardley, I. Povstugar, P. Choi, D. Raabe, A.B. Parsa, A. Kostka, C. Somsen, A. Dlouhy, K. Neuking, E.P. George, and G. Eggeler: Adv. Eng. Mater., 2016, vol. 18, pp. 1556-67.

    Article  Google Scholar 

  30. T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. Mccomb, E.P. George, M. Ghazisaeidi, and M.J. Mills: Acta Mater., 2016, vol. 110, pp. 352–63.

    Article  Google Scholar 

  31. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd edn., Wiley, New York, 1968. pp. 317-318.

    Google Scholar 

  32. C.N. Jones, R.C. Reed, C.M.F. Rae, M. Karunaratne, C.J. Small, and R.W. Broomfield: Superalloys, 2000, Vol. 1, pp. 767–776.

    Google Scholar 

  33. T.M. Pollock and N. Rene: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  Google Scholar 

  34. C.T. Sims: Superalloys, 1984, vol. 1, pp. 399–419.

    Google Scholar 

  35. R. Reed: The Superalloys: Fundamental and Applications, Cambridge University Press, New York, 2006. pp. 51-52.

    Book  Google Scholar 

  36. A.K. Jena and M.C. Chaturvedi: J. Mater. Sci., 1984, vol. 19, pp. 3121–39.

    Article  Google Scholar 

  37. A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 3, pp. 345–68.

    Article  Google Scholar 

  38. P.A. Carvalho, P.M. Bronsveld, B.J. Kooi, and J.T.M. De Hosson: Acta Mater., 2002, vol. 50, pp. 4511–26.

    Article  Google Scholar 

  39. A.K. Sinha: Trans Met. Soc. AIME., 1969, vol. 1969, pp. 1-5.

    Google Scholar 

  40. K.P. Gupta: Phase Diagram Evaluations: Section II., 2005, vol. 26, pp. 87–92.

    Google Scholar 

  41. L. Zhu, C. Wei, L. Jiang, Z. Jin, and J. Zhao: Intermetallics, 2017, vol. 93, pp. 20–9.

    Article  Google Scholar 

  42. P. Kontis, Z. Li, D.M. Collins, J. Cormier, D. Raabe, and B. Gault: Scr. Mater., 2018, vol. 145, pp. 76–80.

    Article  Google Scholar 

  43. E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman: J. Comput. Chem., 2007, vol. 28, pp. 899–908.

    Article  Google Scholar 

  44. G. Kresse and J. Furthmuller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  Google Scholar 

  45. W. Kohn and L.J. Sham: Phys. Rev., 1965. vol. 140, pp. 1133-38.

    Article  Google Scholar 

  46. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–8.

    Article  Google Scholar 

  47. B.D. Forbes, A.V. Martin, S.D. Findlay, A.J. D’Alfonso, and L.J. Allen: Phys. Rev., 2010, vol. 82, pp. 1–8.

    Article  Google Scholar 

  48. L.J. Allen, A.J. D’Alfonso, and S.D. Findlay: Ultramicroscopy., 2015, vol. 151, pp. 11-22.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by NASA’s Aeronautics Research Mission Directorate (ARMD) – Convergent Aeronautics Solutions Project and NASA’s Advanced Air Transport Technology (AATT) Project Office (ARMD). Further funding was provided by the National Science Foundation and the DMREF program under Grant #1534826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Smith.

Additional information

Manuscript submitted March 12, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, T.M., Esser, B.D., Good, B. et al. Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys. Metall Mater Trans A 49, 4186–4198 (2018). https://doi.org/10.1007/s11661-018-4701-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4701-5

Navigation