Skip to main content
Log in

Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, and O.D. Sherby: JOM, 1993, vol. 45, pp. 40–46.

    Article  Google Scholar 

  2. M.D. Hecht, B.A. Webler, and Y.N. Picard: Mater. Charact., 2016, vol. 117, pp. 134–43.

    Article  CAS  Google Scholar 

  3. B. Walser and O.D. Sherby: Metall. Trans. A, 1979, vol. 10, pp. 1461–71.

    Article  CAS  Google Scholar 

  4. M.A. Hamidzadeh, M. Meratian, and A. Saatchi: Mater. Sci. Eng. A, 2013, vol. 571, pp. 193–98.

    Article  CAS  Google Scholar 

  5. M.A. Hamidzadeh, M. Meratian, and M. Mohammadi Zahrani: Mater. Sci. Eng. A, 2012, vol. 556, pp. 758–66.

    Article  CAS  Google Scholar 

  6. G.D. de Almeida Soares, L.H. de Almeida, T.L. da Silveira, and I. Le May: Mater. Charact., 1992, vol. 29, pp. 387–96.

    Article  Google Scholar 

  7. A. Noorian, S. Kheirandish, and H. Saghafian: Iran. J. Mater. Sci. Eng., 2010, vol. 7, pp. 22–29.

    CAS  Google Scholar 

  8. B.A. Migachev: Met. Sci. Heat Treat., 2001, vol. 43, pp. 103–6.

    Article  CAS  Google Scholar 

  9. C. He-Xing, C. Zhe-Chuan, L. Jin-Cai, and L. Huai-Tao: Wear, 1993, vol. 166, pp. 197–201.

    Article  Google Scholar 

  10. X. Zhi, J. Xing, H. Fu, and B. Xiao: Mater. Lett., 2008, vol. 62, pp. 857–60.

    Article  CAS  Google Scholar 

  11. H. Mohrbacher: Materials Science and Technology Conference and Exhibition 2011, MS & T’11. Materials Science and Technology Conference and Exhibition 2011, MS & T’11. Columbus, OH, USA, 16–20 October 2011. pp. 434–45.

  12. M.E. Maja, M.G. Maruma, L.A. Mampuru, and S.J. Moema: J. South. African Inst. Min. Metall., 2016, vol. 116, pp. 981–86.

    Article  CAS  Google Scholar 

  13. M. Fiset, K. Peev, and M. Radulovic: J. Mater. Sci. Lett., 1993, vol. 12, pp. 615–17.

    Article  CAS  Google Scholar 

  14. M.D. Hecht, Y.N. Picard, and B.A. Webler: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2320–35.

    Article  CAS  Google Scholar 

  15. M.D. Abràmoff, P.J. Magalhães, and S.J. Ram: Biophotonics Int., 2004, vol. 11, pp. 36–42.

    Google Scholar 

  16. R. Powell, T. Holland, and B. Worley: J. Metamorph. Geol., 1998, vol. 16, pp. 577–88.

    Article  CAS  Google Scholar 

  17. K.G. Buchanan and M. V. Kral: Metall. Mater. Trans. A , 2012, vol. 43, pp. 1760–69.

    Article  CAS  Google Scholar 

  18. F. Haddad, S.E. Amara, R. Kesri, and S. Hamar-Thibault: J. Phys. IV Fr., 2004, vol. 122, pp. 35–39.

    Article  CAS  Google Scholar 

  19. E.E. Underwood: J. Microsc., 1969, vol. 89, pp. 161–80.

    Article  CAS  Google Scholar 

  20. J. Wang, P. van der Wolk, and S. van der Zwaag: Mater. Trans. JIM, 2000, vol. 41, pp. 761–68.

    Article  CAS  Google Scholar 

  21. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1755–67.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate Miller Centrifugal Casting for providing the mill roll parts for this study. This project was financed in part by a grant from the Commonwealth of Pennsylvania Department of Community and Economic Development (DCED), Developed in PA Program (D2PA). Funding support is also acknowledged from the National Science Foundation, CMMI Award No. 1436064. The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoosuf N. Picard.

Additional information

Manuscript submitted August 29, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, M.D., Webler, B.A. & Picard, Y.N. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel. Metall Mater Trans A 49, 2161–2172 (2018). https://doi.org/10.1007/s11661-018-4588-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4588-1

Navigation