Skip to main content
Log in

Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. R.N. Wright: Wire Technology: Process Engineering and Metallurgy, Elsevier Inc., Oxford, 2011.

    Google Scholar 

  2. G. Sachs: Trans. Faraday Soc., 1928, vol. 24, pp. 84–92.

    Article  Google Scholar 

  3. G.I. Taylor: J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  4. J.F.W. Bishop and R. Hill: Philos. Mag., 1951, vol. 42, pp. 414–27.

    Article  Google Scholar 

  5. M. Hölscher, D. Raabe, and K. Lücke: Acta Metall. Mater., 1994, vol. 42, pp. 879–86.

    Article  Google Scholar 

  6. G. Vega, A. Haddi, and A. Imad: Mater. Des., 2009, vol. 30, pp. 3308–12.

    Article  Google Scholar 

  7. C.J. Luis, J. León, and R. Luri: J. Mater. Process. Technol., 2005, vols. 164–165, pp. 1218–25.

    Article  Google Scholar 

  8. F.F. Kraft, U. Chakkingal, G. Baker, and R.N. Wright: Proc. 6th Int. Conf. Met. Form., 1996, vol. 60, pp. 171–78.

  9. A. Haddi, A. Imad, and G. Vega: Mater. Des., 2011, vol. 32, pp. 4310–15.

    Article  Google Scholar 

  10. A. Bhattacharyya, D. Rittel, and G. Ravichandran: Scripta Mater., 2005, vol. 52, pp. 657–61.

    Article  Google Scholar 

  11. Y.N. Loginov, S.L. Demakov, A.G. Illarionov, and A.A. Popov: Russ. Metall. Met., 2011, vol. 2011, pp. 194–201.

    Article  Google Scholar 

  12. G. Linben, H.D. Mengelberg, and H.P. Stüwe: Z. Met., 1964, vol. 55, pp. 600–04.

    Google Scholar 

  13. H. Aernould, J. Kokubo, and H.P. Stüwe: Z. Met., 1966, vol. 57, pp. 217–25.

    Google Scholar 

  14. U. Schlafer and H.J. Bunge: Texture, 1972, vol. 1, pp. 31–49.

    Article  Google Scholar 

  15. T. Montesin and J.J. Heizmann: J. Appl. Crystallogr., 1992, vol. 25, pp. 665–73.

    Article  Google Scholar 

  16. Y. Wang, H.-Y. Huang, and J.-X. Xie: Mater. Sci. Eng. A, 2011, vol. 530, pp. 418–25.

    Article  Google Scholar 

  17. J. Chen, W. Yan, C.X. Liu, R.G. Ding, and X.H. Fan: Mater. Charact., 2011, vol. 62, pp. 237–42.

    Article  Google Scholar 

  18. Masafumi Matsushita, Tomoya Kuji, Hiromitsu Kuroda, Seigi Aoyama, and Hiroaki Ohfuji: Mater. Sci. Appl., 2011, vol. 2, pp. 911–16.

    Google Scholar 

  19. H. Park and D.N. Lee: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 531–41.

    Article  Google Scholar 

  20. H. Park and D.N. Lee: Mater. Sci. Forum, 2002, vols. 408–412, pp. 637–42.

    Article  Google Scholar 

  21. K.R. Narayanan, I. Sridhar, and S. Subbiah: Appl. Phys. Mater. Sci. Process., 2012, vol. 107, pp. 485–95.

    Article  Google Scholar 

  22. X.M. Luo, Z.M. Song, M.L. Li, Q. Wang, and G.P. Zhang: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1039–43.

    Article  Google Scholar 

  23. S.L. Demakov, Y.N. Loginov, A.G. Illarionov, M.A. Ivanova, and M.S. Karabanalov: Phys. Met. Metallogr., 2012, vol. 113, pp. 681–86.

    Article  Google Scholar 

  24. P.P. Pal-Val, Y.N. Loginov, S.L. Demakov, A.G. Illarionov, V.D. Natsik, L.N. Pal-Val, A.A. Davydenko, and A.P. Rybalko: Mater. Sci. Eng. A, 2014, vol. 618, pp. 9–15.

    Article  Google Scholar 

  25. K. Komori: Int. J. Mech. Sci., 2003, vol. 45, pp. 141–60.

    Article  Google Scholar 

  26. G.M. Rusakov, A.G. Illarionov, Y.N. Loginov, M.L. Lobanov, and A.A. Redikul’tsev: Met. Sci. Heat Treat., 2015, vol. 56, pp. 650–55.

  27. M.L. Lobanov, A.A. Redikul’tsev, G.M. Rusakov, and S.V. Danilov: Met. Sci. Heat Treat., 2015, vol. 57, pp. 492–97.

    Article  Google Scholar 

  28. S.R. Agnew and J.R. Weertman: Mater. Sci. Eng. A, 1998, vol. 242, pp. 174–80.

    Article  Google Scholar 

  29. K. Rajan and R. Petkie: Mater. Sci. Eng. A, 1998, vol. 257, pp. 185–97.

    Article  Google Scholar 

  30. D. Faurie, P.-O. Renault, E. Le Bourhis, and P. Goudeau: Acta Mater., 2006, vol. 54, pp. 4503–13.

    Article  Google Scholar 

Download references

This study was supported by Act 211 of the Government of the Russian Federation, Contract No. 02.A03.21.0006; the Ministry of Education and Science of the Russian Federation, Project No. 2329; and the Russian Foundation for Basic Research, Grant No. 16-32-00030- mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Stepanov.

Additional information

Manuscript submitted July 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorina, M.A., Karabanalov, M.S., Stepanov, S.I. et al. Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire. Metall Mater Trans A 49, 427–433 (2018). https://doi.org/10.1007/s11661-017-4423-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4423-0

Navigation