Skip to main content
Log in

Pseudo-creep in Shape Memory Alloy Wires and Sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interruption of loading during reorientation and isothermal pseudoelasticity in shape memory alloys with a strain arrest (i.e., holding strain constant) results in a time-dependent evolution in stress or with a stress arrest (i.e., holding stress constant) results in a time-dependent evolution in strain. This phenomenon, which we term as pseudo-creep, is similar to what was reported in the literature three decades ago for some traditional metallic materials undergoing plastic deformation. In a previous communication, we reported strain arrest of isothermal pseudoelastic loading, isothermal pseudoelastic unloading, and reorientation in NiTi wires as well as a rate-independent phase diagram. In this paper, we provide experimental results of the pseudo-creep phenomenon during stress arrest of isothermal pseudoelasticity and reorientation in NiTi wires as well as strain arrest of isothermal pseudoelasticity and reorientation in NiTi sheets. Stress arrest in NiTi wires accompanied by strain accumulation or recovery is studied using the technique of multi-video extensometry. The experimental results were used to estimate the amount of mechanical energy needed to evolve the wire from one microstructural state to another during isothermal pseudoelastic deformation and the difference in energies between the initial and the final rest state between which the aforementioned evolution has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. V.R. Russalian: Pseudo-creep in shape memory alloys, Doctoral Dissertation, 2014.

  2. G.K., Kannarpady, M. Wolverton, V. R. Russalian, A. Bhattacharyya, and S. Pulnev: Proc SPIE, 2009, vol. 7289.

  3. M.A.M. Bourke, R. Vaidyanathan, D.C. Dunand, 1996, Appl. Phys. Lett. 69(17): 2477-2479.

    Article  Google Scholar 

  4. R. Vaidyanathan, M.A.M. Bourke, D.C. Dunand, 1999, Acta Materialia, 1999, 47(12): 3353-66.

    Article  Google Scholar 

  5. D. Helm, P. Haupt (2002) Proc. SPIE, 4699: 343-354.

    Article  Google Scholar 

  6. E.A. Pieczyska, S.P. Gadaj, W. K. Nowacki, H. Tobushi, 2006, Int. J. Appl. Electromagn. Mech. 23(1-2): 3-8.

    Google Scholar 

  7. 7. C. Lexcellent, J. Rejzner, 2009, Smart Mater Struct., Vol.9, No.5, 613-21.

    Article  Google Scholar 

  8. F. Zare, M. Jannesari, M. Khadkhodaei, P. Mosaddegh, 2017, J. Intell. Mater. Syst. Struct. 28(7): 923-933.

    Article  Google Scholar 

  9. C. Leinenbach, W. J. Lee, A. Lis, A. Arabi-Hashemi, C. Cayron, B. Weber, 2016, Mater. Sci. Eng. A, 677: 106–115.

    Article  Google Scholar 

  10. 10. V. Russalian and A. Bhattacharyya: Materials Science and Technology, 2013, Vol. 29, Issue 4, pp. 400-411.

    Article  Google Scholar 

  11. V. Russalian and A. Bhattacharyya: Proc. SPIE, 2012, doi: 10.1117/12.915433.

    Google Scholar 

  12. G. K. Kannarpady, A. Bhattacharyya, M. Wolverton, D. W. Brown, S. C. Vogel, and S. Pulnev: Acta Materialia, 2008, Vol. 56, pp. 4724-4738.

    Article  Google Scholar 

  13. H. Yamada and C.Y. Li: Metallurgical Transactions, 1973, Vol. 4, Issue 9, pp. 2133-2136.

    Article  Google Scholar 

  14. E. P. Cernocky and E. Krempl: International Journal of Non-Linear Mechanics, 1979, Vol. 14, Issue 3, pp. 183–203.

    Article  Google Scholar 

  15. E. P. Cernocky and E. Krempl: International Journal of Solids and Structures, 1983, Vol. 19, Issue 9, pp. 753–766.

    Article  Google Scholar 

  16. M. C. M. Liu and E. Krempl: Journal of the Mechanics and Physics of Solids, 1979, Vol. 27, Issues 5–6, pp. 377–391.

    Article  Google Scholar 

  17. M. Wolverton, G. K. Kannarpady and A. Bhattacharyya: Experimental Techniques, 2008, Vol.33, pp. 24-33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharyya.

Additional information

Manuscript submitted November 30, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russalian, V.R., Bhattacharyya, A. Pseudo-creep in Shape Memory Alloy Wires and Sheets. Metall Mater Trans A 48, 4511–4524 (2017). https://doi.org/10.1007/s11661-017-4266-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4266-8

Navigation