Skip to main content
Log in

Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. Y. Zhang, T.T. Zuo, Z. Tang, M. C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Prog. Mater. Sci., 2014, vol. 61, pp. 1-93.

    Article  Google Scholar 

  2. 2. S. Guo, C. Ng, J. Lu, and C.T. Liu: J. Appl. Phys., 2011, vol. 109, pp. 103505.

    Article  Google Scholar 

  3. 3. K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh: Acta Mater., 2013, vol. 61, pp. 4887-4897.

    Article  Google Scholar 

  4. 4. P.-K. Huang, J.-W. Yeh, T.-T. Shun, and S.-K. Chen: Adv. Eng. Mater., 2004, vol. 6, pp. 74-78.

    Article  Google Scholar 

  5. 5. Y. Zhang, X. Yang, and P.K. Liaw: JOM, 2012, vol. 64, pp. 830-838.

    Article  Google Scholar 

  6. 6. C.-L. Lu, S.-Y. Lu, J.-W. Yeh, and W.-K. Hsu: J. Appl. Crystallogr., 2013, vol. 46, pp. 736-739.

    Article  Google Scholar 

  7. 7. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698-706.

    Article  Google Scholar 

  8. 8. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw: Adv. Eng. Mater., 2008, vol. 10, pp. 534-538.

    Article  Google Scholar 

  9. 9. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley: Entropy, 2014, vol. 16, pp. 494-525.

    Article  Google Scholar 

  10. 10. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Mater. Sci. Eng. A, 2004, vol. 375-377, pp. 213-218.

    Article  Google Scholar 

  11. 11. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tasu, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299-303.

    Article  Google Scholar 

  12. 12. S. Ranganathan: Curr. Sci., 2003, vol. 85, pp. 1404-1406.

    Google Scholar 

  13. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li: Sci. Rep., 2014, vol. 4.

  14. 14. B. Zhang, M.C. Gao, Y. Zhang, and S.M. Guo: Calphad, 2015, vol. 51, pp. 193-201.

    Article  Google Scholar 

  15. 15. F. Otto, A. Dlouhy, Ch. Somsen, H. Bei, G. Eggeler, and E.P. George: Acta Mater., 2013, vol. 61, pp. 5743-5755.

    Article  Google Scholar 

  16. 16. E. Ghassemali, R. Sonkusare, K. Biswas, and N.P. Gurao: J. Alloys Comp., 2017, vol. 710, pp. 539-546.

    Article  Google Scholar 

  17. 17. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving: JOM, 2013, vol. 65, pp. 1780-1789.

    Article  Google Scholar 

  18. 18. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. Goerge, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153-1158.

    Article  Google Scholar 

  19. ASTM E517-00: Standard Test Method for Plastic Strain Ratio r for Sheet Metal, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2000, pp. 1–8.

  20. 20. R. Hill: J. Mech. Phy. Solids, 1958, vol. 6, pp. 236-249.

    Article  Google Scholar 

  21. Dessault Systemes, ABAQUS Online Documentation-Abaqus Analysis User’s Manual, 2012.

  22. 22. K. Chung, K. Ahn, D.-H. Yoo, K.-H. Chung, M.-H. Seo, and S.-H. Park: Int. J. Plasticity, 2011, vol. 27, pp. 52-81.

    Article  Google Scholar 

  23. 23. G. Dini, A. Najafizadeh, R. Ueji, and S.M. Monir-Vaghefi: Mater. Des., 2010, vol. 31, pp. 3395-3402.

    Article  Google Scholar 

  24. 24. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141-168.

    Article  Google Scholar 

  25. 25. J.G. Kim, S. Hong, N. Anjabin, B.H. Park, S.K. Kim, K.-G. Chin, S. Lee, and H.S. Kim: Mater. Sci. Eng. A, 2015, vol. 633, pp. 136-143.

    Article  Google Scholar 

  26. 26. A. Bintu, G. Vincze, C.R. Picu, A.B. Lopes, J.J. Gracio, and F. Barlat: Mater. Sci. Eng. A, 2015, vol. 629, pp. 54-59.

    Article  Google Scholar 

  27. 27. B.C. De Cooman, K.-G. Chin, and J. Kim: in: M. Chiaberge (Ed.), New Trends and Developments in Automotive system Engineering, In Tech, Rijeka, 2011.

    Google Scholar 

  28. 28. M. Jain, J. Allin, and M.J. Bull: Mater. Sci. Eng. A, 1998, vol. 256, pp. 69-82.

    Article  Google Scholar 

  29. 29. M.R. Stoudt and R.E. Ricker: Metall. Mater. Trans., 2002, vol. 33A, pp. 2883-2889.

    Article  Google Scholar 

  30. 30. K.-G. Chin, C.-Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.-H. Kim, and N.J. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2922-2928.

    Article  Google Scholar 

  31. 31. Y. Lou, S.J. Lim, and H. Huh: Met. Mater. Int., 2013, vol. 19, pp. 697-705.

    Article  Google Scholar 

  32. 32. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami: Mater. Sci. Eng. A, 2008, vol. 497, pp. 353-357.

    Article  Google Scholar 

  33. 33. M.R. Berrahmoune, S. Berveiller, K. Inal, and E. Patoor: Mater .Sci. Eng. A, 2006, vol. 438-440, pp. 262-266.

    Article  Google Scholar 

  34. 34. P.P. Bhattacharjee, G.D. Sathiaraj, M. Zaid, J.R. Gatti, C. Lee, C.-W. Tsai, and J.-W. Yeh: J. Alloys Comp., 2014, vol. 587, pp. 544-552.

    Article  Google Scholar 

  35. 35. N.-J. Park: Met. Mater., 1998, vol. 4, pp. 467-471.

    Google Scholar 

  36. 36. S.-H. Chio, J.-H. Cho, K.H. Oh, K. Chung, and F. Barlat: Int. J. Mech. Sci., 2000, vol. 42, pp. 1571-1592.

    Article  Google Scholar 

  37. 37. Y. Zhou, J. Savoie, and J.J. Jonas: Mater. Sci. Forum, 1994, vol. 157-162, pp. 879-884.

    Article  Google Scholar 

  38. 38. J. Savoie, Y. Zhou, J.J. Jonas, and S.R. Macewen: Acta Mater., 1996, vol. 44, pp. 587-605.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea (2016M3D1A1023384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Manuscript submitted October 11, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J.W., Moon, J., Jang, M.J. et al. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys. Metall Mater Trans A 48, 4111–4120 (2017). https://doi.org/10.1007/s11661-017-4189-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4189-4

Navigation