Skip to main content
Log in

Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α′-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α′/σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.H. Yang, L.H. Zhu, Q.J. Wang, and C.C. Zhu: Mater. Sci. Eng. A, 2014, vol. 608, pp. 164–73.

    Article  Google Scholar 

  2. Y. Zhang, Y.F. Sun, J.Y. Zhao, and S.K. Guan: J. Iron Steel Res. Int., 2012, vol. 19, pp. 62–66.

    Article  Google Scholar 

  3. K.H. Lee, J.Y. Suh, S.M. Hong, J.Y. Huh, and W.S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–72.

    Article  Google Scholar 

  4. K. Sawada, T. Hara, M. Tabuchi, K. Kimura, and K. Kubushiro: Mater. Charact., 2015, vol. 101, pp. 106–13.

    Article  Google Scholar 

  5. P. Yan, Z.D. Liu, H. Bao, Y.Q. Weng, and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–79.

    Article  Google Scholar 

  6. F. Abe, M. Tabuchi, and S. Tsukamoto: Energy Mater., 2012, vol. 4, pp. 166–74.

    Article  Google Scholar 

  7. J.D. Majumdar, A. Kumar, and L. Li: Tribol. Int., 2009, vol. 42, pp. 750–53.

    Article  Google Scholar 

  8. A. Gholipour, M. Shamanian, and F. Ashrafizadeh: J. Alloy Compd., 2011, vol. 509, pp. 4905–09.

    Article  Google Scholar 

  9. J.R. Davis: Nickel, Cobalt, and Their Alloys, ASM International, Materials Park, 2000, pp. 362–70.

    Google Scholar 

  10. R.A. Jeshvaghani, M. Shamanian, and M. Jaberzadeh: Mater. Des., 2011, vol. 32, pp. 2028–33.

    Article  Google Scholar 

  11. R. Liu, J.H. Yao, Q.L. Zhang, M. Yao, and R. Collier: Mater. Des., 2015, vol. 78, pp. 95–106.

    Article  Google Scholar 

  12. A. Motallebzadeh, E. Atar, and H. Cimenoglu: Tribol. Int., 2015, vol. 91, pp. 40–47.

    Article  Google Scholar 

  13. S. Brussk, A. Schrey, J. Barnikel, D. Weltersbach, and H. Starwald: Turbine Technical Conf. Expo., 2014, vol. 6, pp. 16–20.

    Google Scholar 

  14. J.N. Aoh, Y.R. Jeng, E. Chu, and L. Wu: Wear, 1999, vol. 225, pp. 1114–22.

    Article  Google Scholar 

  15. R. Ahmed, A. Ashraf, M. Elameen, N.H. Faisal, A.M. El-Sherik, Y.O. Elakwah, and M.F.A. Goosen: Wear, 2014, vol. 312, pp. 70–82.

    Article  Google Scholar 

  16. R. Singh, D. Kumar, S.K. Mishra, and S.K. Tiwari: Surf. Coating Technol., 2014, vol. 251, pp. 87–97.

    Article  Google Scholar 

  17. A.P. Hammersley, S.O. Svensson, and A. Thompson: Detection Assoc. Equip., 1994, vol. 346, pp. 312–21.

    Article  Google Scholar 

  18. J.W. Weeton and R.A. Signorelli: An Investigation of Lamellar Structures and Minor Phases in Eleven Cobalt-Base Alloys before and after Heat Treatment, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory, OH, 1954.

    Google Scholar 

  19. F.Q. Xie and H.Z. Fu: Chin. Sci. Bull., 2000, vol. 45, pp. 131–34.

    Article  Google Scholar 

  20. D.H.E. Persson: Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2003, pp. 112–13.

  21. K. Easterling: Introduction to the Physical Metallurgy of Welding, 2nd ed., Butterworth-Heinemann Ltd, Oxford, United Kingdom, 1993, pp. 63–65.

    Google Scholar 

  22. K.N. Adhe, V. Kain, K. Madangopal, and H.S. Gadiyar: J. Mater. Eng. Performance, 1996, vol. 5, pp. 500–06.

    Article  Google Scholar 

  23. R. Jendrzejewski, C. Navas, A. Conde, J. Damborenea, and G. Śliwiński: Mater. Des., 2008, vol. 29, pp. 187–192.

    Article  Google Scholar 

  24. S. Shahab Naghavi, Vinay I. Hegde, and C. Wolverton: Acta Mater., 2017, vol. 132, pp. 467–78.

    Article  Google Scholar 

  25. M.A. Kerkove, T.D. Wood, P.G. Sanders, S.L. Kampe, and D. Swenson: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3800–05.

    Article  Google Scholar 

  26. K. Kawahara: J. Mater. Sci., 1993, vol. 18, pp. 1709–18.

    Article  Google Scholar 

  27. A.M. Barakat, M.F. Abadir, K.T. Nam, A.M. Hamza, S.S. Al-Deyab, W. Baek, and H.Y. Kim: J. Mater. Chem., 2011, vol. 21, p. 10957.

    Article  Google Scholar 

  28. T. Matkovic, L. Slokar, and P. Matkovic: J. Alloys Compd., 2006, vol. 407, p. 294.

    Article  Google Scholar 

  29. A. Karaali, K. Mirouh, S. Hamamda, and P. Guiraldenq: Mater. Sci. Eng. A, 2005, vol. 390(1–2), p. 255.

  30. S. Louidi, F.Z. Bentayeb, W. Tebib, J.J. Suñol, A.M. Mercier, and J.M. Grenèche: J. Non-Cryst. Solids, 2010, vol. 356, pp. 1052–56.

    Article  Google Scholar 

  31. S.H. Zhang, T.Y. Cho, J.H. Yoon, W. Fang, K. Song, M.X. Li, Y.K. Joo, and C.G. Lee: Mater. Charact., 2008, vol. 59, pp. 1412–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo He.

Additional information

Manuscript submitted January 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhao, H., Wang, H. et al. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel. Metall Mater Trans A 48, 4356–4364 (2017). https://doi.org/10.1007/s11661-017-4181-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4181-z

Navigation