Skip to main content
Log in

Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy

  • Topical Collection: Carl Koch Symposium: Mechanical Behavior of Nanomaterials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using surface mechanical attrition treatment (SMAT), a gradient structure composed of two gradient structure (GS) layers and a coarse grain (CG) layer was generated from a Cu-5.7 wt pct Ge alloy, significantly improving the yield strength of the sample. Unloading–reloading tests showed an unusual Bauschinger effect in these GS samples. The back stresses caused by the accumulated geometrically necessary dislocations (GNDs) on the GS/CG border increased with increasing strain. As found by electron backscatter diffraction (EBSD), the GNDs are mainly distributed in the gradient structured layer, and the density of the GNDs increase with increasing SMAT time. The effect of the back stress increased with increasing SMAT processing time due to the increase in the strain gradient. The pronounced Bauschinger effect in a GS sample can improve the resistance to forward plastic flow and finally contributes to the high strength of GS samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

σ f :

Flow stress

σ o :

Friction stress

σ b :

Back stress

σ eff :

Effective stress

σ u :

Reverse yield stress

σ * :

Thermal part of the flow stress

γ :

Shear strain

σ r :

Yield stress during reloading

θ :

Local misorientations

μ :

Unite length

b :

Burgers vector

ρ GND :

Density of geometrically necessary dislocations

Er:

Reloading Young’s modulus

Eu:

Unloading Young’s modulus

ɛ rp :

Reverse plastic strain

References

  1. K. Lu: Science 2014, vol. 345, pp. 1455–66.

    Article  Google Scholar 

  2. T.H. Fang, W.L. Li, N.R. Tao and K. Lu: Science 2011, vol. 331, pp. 1587–90.

    Article  Google Scholar 

  3. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen and Y.T. Zhu: Acta Mater. 2016, vol. 112, pp. 337–46.

    Article  Google Scholar 

  4. Q. Wang, Y. Yang, H. Jiang, C.T. Liu, H.H. Ruan and J. Lu, Sci. Rep. 2014, vol. 4, p. 4757.

    Article  Google Scholar 

  5. T.H. Fang, N.R. Tao and K. Lu: Scripta Mater. 2014, vol. 77, pp. 17–20.

    Article  Google Scholar 

  6. Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang and H. Gao: Nat. Commun., 2014, vol. 5, p. 3580.

    Google Scholar 

  7. K.M. Youssef, R.O. Scattergood, K.L. Murty, A.J. Horton and C.C. Koch: Appl. Phys. Lett., 2005, vol. 87, p. 091904.

    Article  Google Scholar 

  8. X.L. Wu, P. Jiang, L. Chen, F. Yuan and Y.T. Zhu: Proc. Natl. Acad. Sci. USA., 2014, vol. 111, pp. 7197–01.

    Article  Google Scholar 

  9. X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan and Y.T. Zhu: Mat. Res. Lett., 2014, vol. 2, pp. 185–91.

    Article  Google Scholar 

  10. K. Lu and J. Lu: Mater. Sci. Eng. A., 2004, vol. 375-377, pp. 38–45.

    Article  Google Scholar 

  11. X. L. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang and Y. Zhu: Proc. Natl. Acad. Sci. USA., 2015, vol. 112, pp. 14501–15.

    Article  Google Scholar 

  12. Y. Xiang and J.J. Vlassak: Scripta Mater., 2005, vol. 53, pp. 177–82.

    Article  Google Scholar 

  13. Y. Xiang and J.J Vlassak: Acta Mater., 2006, vol. 54, pp. 5449–60.

    Article  Google Scholar 

  14. J. Rajagopalan, J.H. Han and M.T.A. Saif: Scripta Mater., 2008, vol. 59, pp. 734–37.

    Article  Google Scholar 

  15. J. Rajagopalan, C. Rentenberger, H.P.Karnthaler, G. Dehm and M.T.A. Saif: Acta Mater., 2010, vol. 58, pp. 4772–82.

    Article  Google Scholar 

  16. S-W. Lee, A.T. Jennings and J.R. Greer: Acta Mater., 2013, vol. 61, pp. 1872–85.

    Article  Google Scholar 

  17. D. Zhu, H. Zhang and D. Y. Li: Metall. Trans A., 2013, vol. 44, pp. 4207–17.

    Article  Google Scholar 

  18. X. Feaugas: Acta Mater., 1999, vol. 47, pp. 3617–32.

    Article  Google Scholar 

  19. D. Kuhlmann-Wilsdorf and C. Laird: Mat. Sci. Eng., 1979, vol. 37, pp. 111–20.

    Article  Google Scholar 

  20. H.R. Pak, J. Chu, M. Kato and D.P. Pope: Mat. Sci. Eng., 1988, vol. 100, pp. 31–36.

    Article  Google Scholar 

  21. V. Kafka and D. Vokoun: Int. J. Plast., 2005, vol. 21, pp. 1461–80.

    Article  Google Scholar 

  22. E.D. Hintsala, A.J. Wagner, W.W. Gerberich and K.A. Mkhoyan: Scripta Mater. 2016, vol. 114, pp. 51–55.

    Article  Google Scholar 

  23. C.J. Bayley, W.A.M. Brekelmans and M.G.D. Geers: Int. J. Solids Struct., 2006, vol. 43, pp. 7268–86.

    Article  Google Scholar 

  24. E. Kröner, Int. J. Eng. Sci., 1963, vol. 1, pp. 261–62.

    Article  Google Scholar 

  25. J.F Nye: Acta Metall., 1953, vol. 1, pp. 153–62.

    Article  Google Scholar 

  26. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–24.

    Article  Google Scholar 

  27. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan and Y. Zhu: Acta Mat., 2016, vol. 116, pp. 43–52.

    Article  Google Scholar 

  28. M. Calcagnotto, D. Ponge, E. Demir and D. Raabe: Mater. Sci. Eng. A: 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  29. H. Gao, Y. Huang, W.D. Nix and J.W. Hutchinson: J. Mech. Phys. Solids., 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

  30. M. Yang, Y. Pan, F. Yuan, Y. Zhu and X. Wu: Mater. Res. Lett., 2016, vol. 4, pp. 1–7.

    Article  Google Scholar 

  31. A. Rohatgi, K.S. Vecchio and G.T. Gray: MMTA, 2001, vol. 32, pp. 135–45.

    Article  Google Scholar 

  32. F. Hamdi and S. Asgari: Scripta Mater., 2010, vol. 62, pp. 693–96.

    Article  Google Scholar 

  33. U.F. Kocks and H. Mecking: Prog. Mater. Sci., 2003, vol. 48, pp. 171–73.

    Article  Google Scholar 

  34. A. Vinogradov: Adv. Eng. Mater., 2015, vol. 17, pp. 1710–22.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (NSFC) under Grant No. 51561015 and No. 51664033. The authors also thank Dr. Xiao Long Ma for the calculation of GNDs. YTZ would like to acknowledge the support of the US Army Research Office under the Grant No. W911NF-09-1-0427. X.K. Zhu appreciates Professor Carl C. Koch for inviting him to visit his group more than once and for cooperative research on nanostructured materials for 15 years. This paper is dedicated to Carl Koch’s TMS symposium 2017 (Mechanical Behavior of Advanced Materials). This symposium will honor the outstanding contributions of Professor Carl C. Koch to many fields in materials science in the last 50 years and celebrate his 80th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkun Zhu.

Additional information

Manuscript submitted January 1, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Jin, S., Zhou, H. et al. Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy. Metall Mater Trans A 48, 3943–3950 (2017). https://doi.org/10.1007/s11661-017-4176-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4176-9

Navigation