Skip to main content
Log in

Thermodynamic Modeling of the Al-Cr-Mn Ternary System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Lodgaard and N. Ryum: Mater. Sci. Eng. A, 2000, vol. A283, pp. 144–52.

    Article  Google Scholar 

  2. T. Radetic, M. Popovic, and E. Romhanji: Mater. Charact., 2012, vol. 65, pp. 16–27.

    Article  Google Scholar 

  3. A. Jansson: Metall. Trans. A, 1992, vol. 23A, pp. 2953–62.

    Article  Google Scholar 

  4. X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida: J. Phase Equilib., 1999, vol. 20, pp. 45–56.

    Article  Google Scholar 

  5. Y. Du, J. Wang, J. Zhao, J.C. Schuster, F. Weitzer, R. Schmid-Fetzer, M. Ohno, H. Xu, Z.-k. Liu, S. Shang, and W. Zhang: Int. J. Mater. Res., 2007, vol. 98, pp. 855–71.

    Article  Google Scholar 

  6. A. Shukla and A.D. Pelton: J. Phase Equilib. Diffus., 2009, vol. 30, pp. 28–39.

    Article  Google Scholar 

  7. M. Asgar-Khan and M. Medraj: Mater. Trans., 2009, vol. 50, pp. 1113–22.

    Article  Google Scholar 

  8. M.-S. Kim and Y.-B. Kang: J. Phase Equilib. Diffus., 2015, vol. 36, pp. 453–70.

    Article  Google Scholar 

  9. B. Grushko, W. Kowalski, D. Pavlyuchkov, S. Balanetskyy, and M. Surowiec: J. Alloys Compd., 2009, vol. 468, pp. 87–95.

    Article  Google Scholar 

  10. M. Venkatraman and J.P. Neumann: Bull. Alloy Phase Diagrams, 1986, vol. 7, pp. 457–62, 503–04.

  11. B.J. Lee: Metall. Trans. A, 1993, vol. 24A, pp. 1919–33.

    Article  Google Scholar 

  12. S. Cui, I.-H. Jung, J. Kim, and J. Xin: J. Alloys Compd., 2017, vol. 698, pp. 1038–57.

    Article  Google Scholar 

  13. M. Jiang, L. Chen, W. Pang, A. Qiu, X. Lu, and C. Li, Zhongguo: Youse Jinshu Xuebao, 2011, vol. 21, pp. 856–64.

    Google Scholar 

  14. H. Kono: J. Phys. Soc. Jpn., 1958, vol. 13, pp. 1444–51.

    Article  Google Scholar 

  15. A.J.J. Koch, P. Hokkeling, M.G. van der Steeg, and K.J. de Vos: J. Appl. Phys., 1960, vol. 31, pp. 75S–77S.

    Article  Google Scholar 

  16. W. Köster and E. Wachtel: Z. Metallkd., 1960, vol. 51, pp. 271–80.

    Google Scholar 

  17. T. Gödecke and W. Köster: Z. Metallkd., 1971, vol. 62, pp. 727–32.

    Google Scholar 

  18. J.A.J. Robinson, F.H. Hayes, A. Serneels, F. Weitzer, and P. Rogl: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, COST Secretariat, Brussels, 1998, vol. 1, p. 230.

    Google Scholar 

  19. S.J. Carlile, J.W. Christian, and W. Hume-Rothery: J. Inst. Metals, 1949, vol. 76, pp. 169–94; Paper No 1214.

  20. H.T. Greenaway, S.T.M. Johnstone, and M. McQuillan: J. Inst. Metals, 1951, vol. 80, pp. 109–14; Paper No 1330.

  21. A. Hellawell and W. Hume-Rothery: Philos. Trans. R. Soc. Lond. Ser. A 1957, vol. 249, pp. 417–59.

  22. P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995, pp. 3128–43.

    Google Scholar 

  23. V. Raghavan: J. Phase Equilib. Diffus., 2008, vol. 29, pp. 171–72.

    Article  Google Scholar 

  24. T. Schenk, M. Durand-Charre, and M. Audier: J. Alloys Compd., 1998, vol. 281, pp. 249–63.

    Article  Google Scholar 

  25. V. Raghavan: J. Phase Equilib. Diffus., 2009, vol. 30, pp. 620–23.

    Article  Google Scholar 

  26. S. Balanetskyy, W. Kowalski, and B. Grushko: J. Alloys Compd., 2009, vol. 474, pp. 147–51.

    Article  Google Scholar 

  27. G.V. Raynor and K. Little: J. Inst. Metals, 1945, vol. 71, pp. 493–524.

    Google Scholar 

  28. J.W.H. Clare: Trans. Am. Inst. Min., Metall. Pet. Eng., 1959, vol. 215, pp. 429–33.

    Google Scholar 

  29. E. Wachtel and W.U. Kopp: Z. Metallkd., 1965, vol. 56, pp. 121–29.

    Google Scholar 

  30. E. Wachtel and U. Rein: Z. Metallkd., 1965, vol. 56, pp. 690–94.

    Google Scholar 

  31. T. Ohnishi, Y. Nakatani, and K. Shimizu: Keikinzoku, 1972, vol. 22, pp. 504–11.

    Google Scholar 

  32. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355–60.

    Article  Google Scholar 

  33. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–59.

    Article  Google Scholar 

  34. C. Robelin, P. Chartrand, and A.D. Pelton: J. Chem. Thermodyn., 2015, vol. 83, pp. 12–26.

    Article  Google Scholar 

  35. I.-H. Jung, D.-H. Kang, W.-J. Park, N.J. Kim, and S. Ahn: CALPHAD, 2007, vol. 31, pp. 192–200.

    Article  Google Scholar 

  36. M. Hillert: J. Alloys Compd., 2001, vol. 320, pp. 161–76.

    Article  Google Scholar 

  37. Y. Liang, C. Guo, C. Li, and Z. Du: J. Alloys Compd., 2008, vol. 460, pp. 314–19.

    Article  Google Scholar 

  38. B. Hu, W.-W. Zhang, Y. Peng, Y. Du, S. Liu, and Y. Zhang: Thermochim. Acta, 2013, vol. 561, pp. 77–90.

    Article  Google Scholar 

  39. M. Hillert and M. Jarl: CALPHAD, 1978, vol. 2, pp. 227–38.

    Article  Google Scholar 

  40. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317–425.

    Article  Google Scholar 

  41. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: CALPHAD, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  42. A.J. McAlister and J.L. Murray: Bull. Alloy Phase Diagr., 1987, vol. 8, pp. 438–47.

    Article  Google Scholar 

  43. F. Stein, C. He, and I. Wossack: J. Alloys Compd., 2014, vol. 598, pp. 253–65.

    Article  Google Scholar 

  44. I. Ansara, A. Dinsdale, and M. Rand: Thermochemical Database for Light Metal Alloys, Office for Official Publications of the European Communities, Luxembourg, 1998, vol. 2, pp. 143–44.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from NSERC-Automotive Partnership Canada program in Canada. Senlin Cui would also like to thank the McGill Engineering Doctorate Award (MEDA) from McGill University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Manuscript submitted August 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Jung, IH. Thermodynamic Modeling of the Al-Cr-Mn Ternary System. Metall Mater Trans A 48, 1383–1401 (2017). https://doi.org/10.1007/s11661-016-3894-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3894-8

Keywords

Navigation