Skip to main content
Log in

Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue behavior of a friction-stir-welded Al-Mg-Sc alloy was examined in cast and hot-rolled conditions. In both cases, the joints failed in the base material region and therefore the joint efficiency was 100 pct. The specimens machined entirely from the stir zone demonstrated fatigue strength superior to that of the base material in both preprocessed tempers. It was shown that the excellent fatigue performance of friction-stir joints was attributable to the ultra-fine-grained microstructure, the low dislocation density evolved in the stir zone, and the preservation of Al3Sc coherent dispersoids during welding. The formation of such structure hinders the initiation and growth of fatigue microcracks that provides superior fatigue performance of friction-stir welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Since the microstructure, texture, and microhardness values of stir zone materials in both studied material conditions (i.e. cast and hot rolled ones) were found to be broadly similar,[17] the fatigue behavior was also assumed to be the same in both cases. Therefore, the fatigue specimens were machined from the stir zone of FSW-processed cast material only.

References

  1. A. Munoz Cobello, G. Ruckert, B. Huneau, X. Sauvage, S. Marya: J. Mater. Proces. Technol., 2008, vol. 197, pp. 337–343.

    Article  Google Scholar 

  2. D. Zhemchuzhnikova, A. Mogucheva, R. Kaibyshev: Mater. Sci. Eng. A, 2013, vol. 565, pp. 132–141.

    Article  Google Scholar 

  3. J. Zhao, F. Jiang, H. Jian, K. Wen, L. Jiang, X. Chen: Mater. Design, 2010, vol. 31, pp. 306–311.

    Article  Google Scholar 

  4. X. Sauvage, A. Dede, A. Munoz Cabello, B. Huneau: Mater. Sci. Eng. A, 2008, vol. 491, pp. 346–371.

    Article  Google Scholar 

  5. P. Yongyi, Y. Zhimin, L. Xuefeng, P. Qinglin, H. Zhenbo: Rare Metal Mater. Eng., 2011, vol. 40 (2), pp. 201–204.

    Article  Google Scholar 

  6. S. Malopheyev, V. Kulitskiy, S. Mironov, D. Zhemchuzhnikova, R. Kaibyshev: Mater. Sci. Eng. A, 2014, vol. 600, pp. 159–170.

    Article  Google Scholar 

  7. N. Kumar, R.S. Mishra: Mater. Charact., 2012, vol. 74 (11), pp. 1–10.

    Article  Google Scholar 

  8. N.Q. Vo, D.C. Dunand, D.N. Seidman: Acta Mater., 2012, vol. 60, pp. 7078–7089.

    Article  Google Scholar 

  9. F.C. Liu, Z.Y. Ma: Scripta Mater., 2008, vol. 59, pp. 882–885.

    Article  Google Scholar 

  10. F.C. Liu, Z.Y. Ma, L.Q. Chen: Scr. Mater., 2009, vol. 60. pp. 968–971.

    Article  Google Scholar 

  11. F.C. Liu, Z.Y. Ma: Scr. Mater., 2010, vol. 62, pp. 125–128.

    Article  Google Scholar 

  12. F.C.Liu, Z.Y. Ma: Mater. Sci. Eng. A, 2011, vol. 530, pp. 548–558.

    Article  Google Scholar 

  13. N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran: Scr. Mater., 2011, vol. 64, pp. 576–579.

    Article  Google Scholar 

  14. N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5883–5887.

    Article  Google Scholar 

  15. F.C. Liu, P. Xue, Z.Y. Ma: Mater. Sci. Eng. A, 2012, vol. 547, pp. 55–63.

    Article  Google Scholar 

  16. F.C. Liu, Z.Y. Ma, F.C. Zhang: J. Mater. Sci. Technol., 2012, vol. 28 (11), pp. 1025–1030.

    Article  Google Scholar 

  17. D. Zhemchuzhnikova, S. Malopheyev, S. Mironov, R.Kaibyshev: Mater. Sci. Eng. A, 2014, vol. 598, pp. 387–395.

    Article  Google Scholar 

  18. M. Goto, S.Z. Han, J. Kitamura, T. Yakushiji, J.H. Ahn, S.S. Kim, M. Baba, T. Yamamoto, J. Lee: Int. J. Fatig., 2015, vol. 73, pp. 98–109.

    Article  Google Scholar 

  19. D.B. Williams, C.B. Carter, Transmission Electron Microscopy, A Text Book for Materials Science, Springer, 2009, p.820.

    Google Scholar 

  20. M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, C.-F. Yen, B.A. Cheeseman, C. Fountzoulas: J. Mater. Eng. Perform., 2011, vol. 20, pp. 855–864.

    Article  Google Scholar 

  21. ASM Handbook: Fractography, vol. 12, ASM International—Materials Information Society, USA, 1987, p. 857.

    Google Scholar 

  22. ASM Handbook, Fracture and Fatigue, vol. 19, ASM International—Materials Information Society, USA, 1996, p. 2592.

    Google Scholar 

  23. F. Ellyin (1997): Fatigue Damage, Crack Growth and Life Prediction, Chapman & Hall, London, pp. 12–441

    Google Scholar 

  24. J. Polák, J. Man: Int. J. Fatigue, 2016, vol.91, pp. 294–303.

    Article  Google Scholar 

  25. P. Neumann: Acta Metal, 1974, vol.22, pp.1155–1165.

    Article  Google Scholar 

  26. P. Neumann: Acta Metal, 1969, vol.17, pp.1219–1225.

    Article  Google Scholar 

  27. A. Hunsche, P.Neumann: Acta Metal, 1986, vol.34, pp.207–217.

    Article  Google Scholar 

  28. A. Vinogradov: J Mater Sci, 2007, vol. 42, pp. 1797–1808.

    Article  Google Scholar 

  29. S. Suresh (1998): Fatigue of materials, Cambridge University Press, Cambridge, vol. 2, pp. 37–85

    Book  Google Scholar 

  30. R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  31. C. Zhou, X. Yang, G. Luan: J. Mater. Sci., 2006, vol. 41, pp. 2771–2777.

    Article  Google Scholar 

  32. C. Zhou, X. Yang, G. Luan: Scr. Mater., 2005, vol.53, pp. 1187–1191.

    Article  Google Scholar 

  33. A. C. de Oliveira Miranda, A. Gerlich, Sc. Walbridge: Eng. Fracture Mech., 2015, vol. 147, pp. 243–260.

    Article  Google Scholar 

  34. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, P.J. Withers: Int. Mater. Rev., 2009, vol. 54, pp. 49–93.

    Article  Google Scholar 

  35. S. Mironov, K. Inagaki, Y.S. Sato & H. Kokawa; Phil. Mag., 2015, vol. 95, pp. 367–381.

    Article  Google Scholar 

  36. S. Mironov, N. Onuma, Y.S. Sato, H. Kokawa: Acta Mater., 2015, vol. 100, pp. 301–312.

    Article  Google Scholar 

  37. Y. Estrin, A. Vinogradov: Int. J. Fatig., 2010, vol. 32, pp. 898–907.

    Article  Google Scholar 

  38. H Mughrabi, H.W. Hoppel: Int. J. Fatig., 2010, vol. 32, pp. 1413–1427.

    Article  Google Scholar 

  39. A. Vinogradov, A. Washikita, K. Kitagawa, V.I. Kopylov: Mater. Sci. Eng., 2003, vol. A349, pp. 318–326.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support received from the Ministry of Education and Science, Russia (Belgorod State University Project No. 1533) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Zhemchuzhnikova.

Additional information

Manuscript submitted October 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhemchuzhnikova, D., Mironov, S. & Kaibyshev, R. Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy. Metall Mater Trans A 48, 150–158 (2017). https://doi.org/10.1007/s11661-016-3843-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3843-6

Keywords

Navigation