Skip to main content
Log in

Effect of Current Pathways During Spark Plasma Sintering of an Aluminum Alloy Powder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Spark plasma sintering has been a well-studied processing technique primarily for its very high cooling and heating rates. However, the underlying phenomenon driving the sintering behavior of powders under an electric field is still poorly understood. In this study, we look at the effect of changing current pathways through the powder bed by changing die materials, from conductive graphite to insulating boron nitride for sintering aluminum alloy 5083 powder. We found that the aluminum powder itself was insulating and that by changing the current paths, we had to find alternate processing methods to initiate sintering. Altering the current pathways led to faster temperature raises and faster melting (and potentially densification) of the aluminum powder. A flash sintering effect in metallic powders is observed in which the powder compact undergoes a rapid transition from electrically insulating to conducting at a temperature of 583 K (310 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. 1.) Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater.Sci., 2006, vol. 41, pp. 763-777.

    Article  Google Scholar 

  2. 2.) D. Hulbert, A. Anders, J. Andersson, E. Lavernia, and A. Mukherjee: Scr. Mater., 2009, vol. 60, pp. 835-838.

    Article  Google Scholar 

  3. 3.) E. Olevsky, and L. Froyen: Scr. Mater., 2006, vol. 55, pp. 1175-1178.

    Article  Google Scholar 

  4. 4.) L. Stanciu, V. Kodash, and J. Groza: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2633-2638.

    Article  Google Scholar 

  5. 5.) M.Omori: Metall. Mater. Trans. A, 2000, vol. 31, pp. 183-188.

    Google Scholar 

  6. 6.) R. Duan, G. Zhan, J. Kuntz, B. Kear, and A. Mukherjee: Mater. Sci. Eng., A, 2004, vol. 373, pp. 180-186.

    Article  Google Scholar 

  7. 7.) Z. Zhang, F. Wang, S. Lee, Y. Liu, J. Cheng, and Y. Liang: Mater. Sci. Eng., A, 2009, vol. 523, pp. 134-138.

    Article  Google Scholar 

  8. 8.) C. Shearwood, Y. Fu, L. Yu, and K. Khor: Scr. Mater., 2005, vol. 52, pp. 455-460.

    Article  Google Scholar 

  9. 9.) G. Kim, D. Shin, Y. Seo, and Y. Kim: Mater. Charact., 2008, vol. 59, pp. 1201-1205.

    Article  Google Scholar 

  10. 10.) R. Kumar, K. Prakash, P. Cheang, and K. Khor: Acta Mater., 2005, vol. 53, pp. 2327-2335.

    Article  Google Scholar 

  11. W. Chen, U. Anselmi-Tamburini, J. Garay, J. Groza, J. and Z. Munir: Mater. Sci. Eng. A, 2005, vol. 394, pp. 132–38.

  12. 12.) U. Anselmi-Tamburini, S. Gennari, J. Garay, and Z. Munir: Mater. Sci. Eng. A, 2005, vol. 394, pp. 139-148.

    Article  Google Scholar 

  13. 13.) U. Anselmi-Tamburini, J. Garay, and Z. Munir: Mater. Sci. Eng. A, 2005, vol. 407, pp. 24-30.

    Article  Google Scholar 

  14. 14.) H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287, pp. 227-237.

    Article  Google Scholar 

  15. 15.) J. Garay, U. Anselmi-Tamburini, and Z. Munir: Acta Mater., 2003, vol. 51, pp. 4487-4495.

    Article  Google Scholar 

  16. 16.) J. Friedman, J. Garay, U. Anselmi-Tamburini, and Z. Munir: Intermetallics, 2004, vol. 12, pp. 589-597.

    Article  Google Scholar 

  17. 17.) M. Cologna, B. Rashkova, and R. Raj: J. Am. Ceram. Soc., 2010, vol. 93, pp. 3556-3559.

    Article  Google Scholar 

  18. 18.) R. Raj, M. Cologna, and J. Francis: J. Am. Ceram. Soc., 2011, vol. 94, pp. 1941-1965.

    Article  Google Scholar 

  19. 19.) Y. Zhang and J. Luo: Scr. Mater., 2015, vol. 106, pp. 26-29.

    Article  Google Scholar 

  20. 23.) C. Carney, and T. Mah: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3448-3450.

    Article  Google Scholar 

  21. 24.) J. Garay: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 445-468.

    Article  Google Scholar 

  22. 25.) G. Xie, O. Ohashi, T. Yoshioka, M. Song, K. Mitsuishi, H. Yasuda, K. Furuya, and T. NodaI: Mater. Trans., 2001, vol. 42, pp. 1846-1849.

    Article  Google Scholar 

  23. 26.) B. McWilliams, J. Yu, and A. Zavaliangos: J. Mater. Sci., 2015, vol. 50, pp. 519-530.

    Article  Google Scholar 

  24. 27.) A. Zavaliangos, J. Zhang, M. Krammer, and J. Groza: Mater. Sci. Eng. A, 2004, vol. 379, pp. 218-228.

    Article  Google Scholar 

  25. 28.) L. Kowalski, B. Korevaar, and J. Duszczyk: J. Mater. Sci., 1992, vol. 27, pp. 2770-2780.

    Article  Google Scholar 

  26. 29.) L. Chen, W. Song, J. Lv, X. Chen, and C. Xie: Mater. Chem. Phys., 2010, vol. 120, pp. 670-675.

    Article  Google Scholar 

  27. 30.) Y. Li, W. Song, C. Xie, D. Zeng, A. Wang, and M. Hu: Mater. Chem. Phys., 2006, vol. 97, pp. 127-131.

    Article  Google Scholar 

  28. 31.) A. Lawley: J. Mater., 1990, vol. 42, pp. 12-14.

    Google Scholar 

  29. 32.) Z. Trzaska, and J-P Monchoux: J. Alloys Compd., 2015, vol. 635, pp. 142-149.

    Article  Google Scholar 

  30. 33.) N. Toyofuku, T. Kuramoto, T. Imai, M. Ohyanagi, and Z. Munir: J. Mater. Sci., 2012, vol. 47, pp. 2201-2205

    Article  Google Scholar 

  31. J. Frei, U. Anselim-Tamburini, and Z. Munir: J. Appl. Phys., 2007, vol. 101, pp. 114914-1, 114914-8.

  32. 20.) B. Nui, F. Zhang, J. Zhang, W. Ji, W. Wang, and Z. Fu: Scr. Mater., 2016, vol. 116, pp. 127-130.

    Article  Google Scholar 

  33. 21.) S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D. Jayaseelan, W. Lee, and M. Reece: J. Am. Ceram. Soc., 2014, vol. 97, pp. 2405-2408.

    Article  Google Scholar 

  34. 22.) S. Grasso, E. Kim, T. Saunders, M. Yu, S. Choi, A. Tudball, and M. Reece: Cryst. Growth Des., 2016, vol. 16, pp. 2317-2321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kellogg.

Additional information

Manuscript submitted June 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellogg, F., McWilliams, B. & Cho, K. Effect of Current Pathways During Spark Plasma Sintering of an Aluminum Alloy Powder. Metall Mater Trans A 47, 6353–6367 (2016). https://doi.org/10.1007/s11661-016-3803-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3803-1

Keywords

Navigation