Skip to main content
Log in

Phase Field Simulations of Autocatalytic Formation of Alpha Lamellar Colonies in Ti-6Al-4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present phase field simulations incorporating contributions due to chemical free energy, anisotropic interfacial energy, and elastic energy due to transformation strain, to demonstrate the nucleation and growth of multiple variants of alpha from undercooled beta in Ti-6Al-4V under isothermal conditions. A new composite nucleation seeding approach is used within the phase field simulations to demonstrate that the presence of a pre-existing strain field can cause the nucleation of specific crystallographic variants of alpha based on minimization of local elastic strain energy. Under conditions where specific combinations of elastic strains exist, for example in the vicinity of one or more pre-existing alpha variants, the nucleation of a new alpha variant is followed by the successive nucleation of the same variant in the form of a lamellar colony by an autocatalytic mechanism. At a given thermodynamic undercooling, the colony structure was favored at a nucleation rate that was low enough to allow sufficient growth of previously nucleated variants before another nucleus formed in their vicinity. Basket weave morphology was formed at higher nucleation rates where multiple nuclei variants grew almost simultaneously under evolving strain fields of several adjacent nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Stanford and P.S. Bate, Acta. Mater. 2004, vol. 52, pp. 5215-5224.

    Article  Google Scholar 

  2. S.M. Kelly et al., Porccedings of the 7th International Conference on Trends in Welding Research, May 16–20, 2005, Pine Mountain, GA, pp. 65–70.

  3. R.D. Townsend and J.S. Kirkaldy, Trans. ASM, 1969, vol. 61, pp.605–19.

    Google Scholar 

  4. H.I. Aaronson et al., Mater Sci Eng, 1995, vol. B32, pp. 107-123.

    Article  Google Scholar 

  5. R. Shi and Y. Wang, Acta Mater, 2013, vol. 61, pp. 6006-6024.

    Article  Google Scholar 

  6. S.M. Kelly and S.L. Kampe, Metall. Trans. A, 2004, vol. 35A, pp. 1861-1867.

    Article  Google Scholar 

  7. S.M. Kelly and S.L. Kampe, Metall. Trans. A, 2004, vol. 35A, pp. 1869-1879.

    Article  Google Scholar 

  8. D. Qiu, R. Shi, D. Zhang, W. Lu and Y. Wang, Acta Metall., 2015, vol. 88, pp. 218-231.

    Google Scholar 

  9. Y. Liao et al., Journal of Applied Physics, 2010, vol. 108, 063518.

    Article  Google Scholar 

  10. J. W. Christian, “The Theory of Transformations in Metals and Alloys – Part 1,” Pergamon, Oxford, 2002.

    Google Scholar 

  11. G.A. Sargent et al., Metall. Trans. A, 2012, vol. 43A, pp. 3570-3585.

    Article  Google Scholar 

  12. R.V. Ramanujan and P.J. Maziasz, Metall. Trans. A, 1996, vol. 27A, pp. 1661-1673.

    Article  Google Scholar 

  13. S.G. Kim, W.T. Kim and T. Suzuki, Phys Rev E, 1999, vol. 60, pp. 7186-7197.

    Article  Google Scholar 

  14. I. Steinbach and M. Apel, Physica D, 2006, vol. 217, pp. 153-160.

    Article  Google Scholar 

  15. H. Kobayashi et al., Scripta Mater., 2003, vol. 48, pp. 689-694.

    Article  Google Scholar 

  16. L.Q. Chen, Annual Review of Materials Research, 2002, vol. 32, 113-140.

    Article  Google Scholar 

  17. N. Moelans, B. Blanpain and P. Wollants, Calphad , 2008, vol. 32, pp. 268–294.

    Article  Google Scholar 

  18. A.G. Khachaturyan, Theory of structural transformations in solids, John Wiley & Sons, New York, 1983, pp. 226-240.

    Google Scholar 

  19. K. Ammar, B. Appolaire, G. Cailletaud and S. Forest, Eur. J. Comput. Mech., 2009, vol. 18, pp. 485-523.

    Google Scholar 

  20. S.Y. Hu and L.Q. Chen, Acta Mater., 2001, vol. 49, pp. 1879-1890.

    Article  Google Scholar 

  21. J.L.W. Warwick et al., Acta Mater., 2012, vol. 60, pp. 4117-4127.

    Article  Google Scholar 

  22. I. Katzarov, S. Malinov and W. Sha, Metallurgical and Materials Transactions, 2002, vol. 33A, pp. 1027-1040.

    Article  Google Scholar 

  23. C.G. Rhodes and N.E. Paton, Metallurgical Transactions, 1979, vol. 10A, pp. 209-216.

    Article  Google Scholar 

  24. Y. Ohmori, K. Nakai, H. Ohtsubo and M. Tsunofuri, Mater. Trans. JIM, 1994, vol. 35, pp. 238-246.

    Article  Google Scholar 

  25. T. Ahmed and H.J. Rack, Materials Science and Eng., 1998, A243, pp. 206-211.

    Article  Google Scholar 

  26. Y. Ji et al., Journal of Phase Equilibria and Diffusion, 2016, vol. 37, pp. 53-64.

    Article  Google Scholar 

  27. S.L. Semiatin et al., Metall. Mater. Trans. A, 2004, vol. 35, pp. 3015-3018.

    Article  Google Scholar 

  28. D. Good: J. Inst. Met., 1959–1960, vol. 88, pp. 444–48.

  29. L-Q. Chen and J. Shen, Computer Physics Communications, 1998, vol. 108, pp. 147-158.

    Article  Google Scholar 

  30. D. Pekurovsky, SIAM Journal of Scientific Computing, 2012, vol. 34, pp. C192-C209.

    Article  Google Scholar 

  31. T.W. Heo and L-Q.Chen: JOM, 2014, vol. 66, pp. 1520–28.

  32. R. Shi, N. Ma and Y. Wang, Acta Mater. Vol. 60, 2012, pp. 4172-4184.

    Article  Google Scholar 

  33. F. Diu, D.W. Zhao and G.C. Yang, Metall. Mater. Trans., 2001, vol. 32B, pp. 449-457.

    Google Scholar 

  34. O.M. Barabash et al., Journal of Applied Physics, 2003, vol. 94, pp. 738-742.

    Article  Google Scholar 

  35. O.M. Barabash et al., Journal of Applied Physics, 2004, vol. 96, pp. 3673-367.

    Article  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Laboratory Directed Research and Development program at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Radhakrishnan.

Additional information

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Manuscript submitted September 11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, B., Gorti, S. & Babu, S.S. Phase Field Simulations of Autocatalytic Formation of Alpha Lamellar Colonies in Ti-6Al-4V. Metall Mater Trans A 47, 6577–6592 (2016). https://doi.org/10.1007/s11661-016-3746-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3746-6

Keywords

Navigation