Skip to main content
Log in

Characterization of M23C6 Carbides Precipitating at Grain Boundaries in 100Mn13 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Characteristics of the formation, the interfacial structure, and the defects of M23C6 carbides in 100Mn13 steel after 1323 K (1050 °C) solution treatment and subsequent aging treatment were investigated by transmission electron microscope (TEM). The results show that M23C6 carbides precipitated on both sides of the grain boundaries. Each M23C6 carbide particle possesses a coherent interface and the cube–cube orientation relationship with the one austenite grain which M23C6 precipitated from. The orientation relationships between the M23C6 carbides and the austenite matrix were determined as follows: (1) [211]γ \( \parallel \)[211]M23C6, (\( 1\bar{1}\bar{1} \))γ \( \parallel \)(\( 1\bar{1}\bar{1} \))M23C6, (02\( \bar{2} \))γ \( \parallel \)(02\( \bar{2} \))M23C6, (2) [110]γ \( \parallel \)[110]M23C6, (\( \bar{1}1\bar{1} \))γ \( \parallel \)(\( \bar{1}1\bar{1} \))M23C6, (\( \bar{1} \)11)γ \( \parallel \)(\( \bar{1} \)11)M23C6. The M23C6 carbide also possesses an incoherent interface with the other austenite grain which the M23C6 carbide grew into by ledge mechanism. The precipitation of the M23C6 carbides along the boundaries can improve the hardness of the high-manganese steel to some extent. Besides, twinning and stacking faults were observed in M23C6 carbides. The reports about twinning and stacking faults in the M23C6 carbides have not been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. ASM (1990) ASM Handbook Properties and Selection: Irons, Steels, and High performance Steels, 10th ed., vol. 1. ASM International, Materials Park.

    Google Scholar 

  2. [2] Y.N. Dastur, W.C. Leslie: Metall. Trans. A, 1981, vol. 12 (5), pp. 749–59.

    Article  Google Scholar 

  3. [3] A.K. Srivastava, K. Das:J. Mater. Sci., 2008, vol. 43 (16), pp. 5654–58.

    Article  Google Scholar 

  4. [4] Ding Z M, Wang S J, Yang F, Yan Y: T MATER HEAT TREAT, 2007, vol. 28(Supplement), pp. 29-33.

    Google Scholar 

  5. Kleshcheva I. I., Shur E. A.: Metalloved. Term. Obrab. Met. 1990, vol. 1, pp. 23-7.

    Google Scholar 

  6. Y. Imai, T. Saitô: Metalurgia, 1962, pp. 92–103.

  7. [7] Leigang Zheng, Xiaoqiang Hu, Xiuhong Kang, Dianzhong Li: Materials and Design, 2015, vol. 78, pp. 42-50.

    Article  Google Scholar 

  8. [8] Chang J: The study of low-temperature phase transformations of a high manganese steel. National Taiwan University of Science and Technology, Taiwan, 2011.

    Google Scholar 

  9. [9] Liao C Y: A study of Phase transformation in a 16Mn-low carbon steel. National Taiwan University of Science and Technology, Taiwan, 2008.

    Google Scholar 

  10. Jiang MJ: Carbides and pearlites in an Fe-20Mn-05C alloy. National Taiwan University of Science and Technology, Taiwan, 2009.

    Google Scholar 

  11. Sue WY: Phase transformations during aging processes in an Fe-301Mn-064C alloy. National Taiwan University of Science and Technology, Taiwan, 2010.

    Google Scholar 

  12. [12] Yang Y S: The study of low-temperature phase transformations in ultrahigh manganese steels. National Taiwan University of Science and Technology, Taiwan, 2012.

    Google Scholar 

  13. [13] Dusevich V M, Shur E A, Semenov I A: Metalloved. Term. Obrab. Met. 1989, vol. 9, pp. 46-9.

    Google Scholar 

  14. [14] Gruzin P L, Grigorkin V I, Mural V V, Moskaleva L N: Metalloved. Term. Obrab. Met. 1969, vol. 1, pp. 5-8.

    Google Scholar 

  15. [15] M.H. Lewis, B. Hattersley: Acta Metall. 1965, vol. 13, pp. 1159-68.

    Article  Google Scholar 

  16. [16] Lin Y L, Chou C P: Scripta Metal. Mater. 1992, vol. 27, pp. 67-70.

    Article  Google Scholar 

  17. [17] Rong Y H, Guo Y X, Hu G X: Metallography, 1989, vol. 22, pp. 47-55.

    Article  Google Scholar 

  18. [18] Spanos G, Reynolds W T, Jr., Vandermeer R A: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1367-79.

    Article  Google Scholar 

  19. [19] Howe J M, Spanos G: Philos. Mag. A, 1999, vol. 79(1), pp. 9-30.

    Article  Google Scholar 

  20. G. Gottstein, F. Schwarzer: Mater. Sci. Forum 1992, 94–96, pp.187-208.

    Article  Google Scholar 

  21. [21] Je-Kang Du, Chau-Hsiang Wang, Kuo-Chiang Wang, Ker-Kong Chen: Intermetallics, 2014, vol. 45, pp. 80-83.

    Article  Google Scholar 

  22. [22] Lee TH, Ha HY, Kim SJ: Metall Mater Trans A, 2011, vol. 42A, 3543-48.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor Zhiquan LIU and Dr. Shuang GAO of Institute of Metal Research, Chinese Academy of Sciences, for valuable guidance and assistance in this work. This work was supported by the Program for Liaoning Excellent Talents in University within the Project No. LR2012014, the Technology Promotion Program from the Ministry of Railway of China within the Project No. 2012G011-D, and Science and Technology Project of Dalian within the Project No. 2013A16GX119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Ding.

Additional information

Manuscript submitted November 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Ding, Z., Dong, L. et al. Characterization of M23C6 Carbides Precipitating at Grain Boundaries in 100Mn13 Steel. Metall Mater Trans A 47, 4862–4868 (2016). https://doi.org/10.1007/s11661-016-3656-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3656-7

Keywords

Navigation