Skip to main content
Log in

Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electrical discharge machining (EDM) is a popular non-traditional machining technique that is usually performed in kerosene. Carbon from the kerosene is mixed into the recast layer during EDM, increasing its hardness. EDM can be performed in deionized water, which causes decarburization. We studied the effects of carbon in the dielectric fluid and workpiece on the characteristics of recast layers. Experiments were conducted using gray cast iron and mild steel workpieces in deionized water or kerosene under identical operating conditions. Scanning electron microscopy revealed that the recast layer formed on gray iron was rougher than that produced on mild steel. Moreover, the dispersion of graphite flakes in the gray iron seemed to cause subsurface cracks, even when EDM was performed in deionized water. Dendritic structures and iron carbides were found in the recast layer of gray iron treated in deionized water. Kerosene caused more microcracks to form and increased surface roughness compared with deionized water. The microcrack length per unit area of mild steel treated in deionized water was greater than that treated in kerosene, but the cracks formed in kerosene were wider. The effect of the diffusion of carbon during cooling on the characteristics of the recast layer was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] Y. Zhang, Y. Liu, Y. Shen, R. Ji, Z. Li, C. Zheng, J. Mater. Process. Technol., 2014, vol. 214, no. 5, pp. 1052–1061.

    Article  Google Scholar 

  2. M. Barash, M.G. Sri-Ram, Proceedings of Third International Machine Tool Design and Research Conference, Birmingham, 1962, pp. 8591

  3. [3] J.C. Rebelo, A.M. Diaz, D. Kremer, J.L. Lebrun, J. Mater. Process. Technol., 1998, Vol.84, no.1–3, pp. 90–99.

    Article  Google Scholar 

  4. B. Ekmekci, Metall. Mater. Trans. B, Process., 2009, Sci. 40, pp.70–81.

    Article  Google Scholar 

  5. [5] J.P. Kruth, L. Stevens, L. Froyen, B. Lauwers, K.U. Leuven, Ann. CIRP, 1995, vol.44, pp. 169–172.

    Article  Google Scholar 

  6. M.D. Nguyen, M. Rahman, Y.S. Wong, Int. J. Machine Tools & Manufact, March–April 2012, vol. 54–55, pp. 55-65.

    Article  Google Scholar 

  7. [7] M.L. Jeswani, Wear, 1981, vol. 7, no. 1, pp. 81–88.

    Article  Google Scholar 

  8. W. Konig, F.J. Siebers: American Society of Mechanical Engineers, Production Engineering Division (Publication), 1993, vol. 64, pp. 649–58

  9. [9] S.L. Chen, B.H. Yan, F.Y. Huang, J. Mater. Process. Technol., 1999, vol. 87, pp. 107–111.

    Article  Google Scholar 

  10. [10] G. Cusanelli, A. Hessler-Wyser, F. Bobard, R. Demellayer, R. Perez, R. Flükiger, J. Mater. Process. Technol., 2004, Vol. 149, pp. 289–295.

    Article  Google Scholar 

  11. M. Barash, Metals Eng., 1965, Q.5, pp. 4851.

    Google Scholar 

  12. [12] B.H. Yan, H.C. Tsa, F.Y. Huang, Int. J. Machine Tools & Manufact., 2005, vol. 45, pp. 194200.

    Article  Google Scholar 

  13. [13] M.P. Groover: Fundamentals of modern manufacturing, materials, processes, and systems, 4th ed., p. 118, Publisher John Wiley & Son Inc., New York, 2010.

    Google Scholar 

  14. [14] K.T. Chiang, F.P. Chang, D.C. Tsai, J. Mater. Process. Technol., 2007, vol.182, pp. 525533.

    Article  Google Scholar 

  15. [15] Y. Zhang, Y. Liu, R. Ji, B. Cai, Appl. Surf. Sci., 2011, vol. 257, pp. 59895997.

    Article  Google Scholar 

  16. M.K. Satyarthi, P.M. Pandey, ASME 2013 International Mechanical Engineering Congress and Exposition, Volume 2B: Advanced Manufacturing, San Diego, California, USA, 2013, pp. 62–67

    Google Scholar 

  17. G.N. Levy, CIRP Annals - Manufact. Technol., 1993, vol. 42, no.1, pp. 227–230.

    Article  Google Scholar 

  18. [18] F.N. Leão, I.R. Pashby, J. Mater. Process. Technol., vol. 149, June 2004, pp. 341346.

    Article  Google Scholar 

  19. [19] Y.H. Guu, M.T.K. Hou, Mater. Sci. Eng. A, September 2007, vol. 466, pp. 6167.

    Article  Google Scholar 

  20. [20] B. Ekmekci, A.E. Tekkaya, A. Erden, Int. J. Machine Tools & Manufact., 2006, vol. 46, pp. 858868.

    Article  Google Scholar 

  21. [21] B. Ekmekci, Appl. Surf. Sci., 2007, vol. 253, pp. 92349240.

    Article  Google Scholar 

  22. [22] F.J. O’Brien, D. Taylor, T.C. Lee, J. Biomech., 2003, vol. 36, pp. 973980.

    Article  Google Scholar 

  23. [23] W. König, L. Jörres, CIRP Annals - Manufact. Technol., 1987, vol. 36, no.1, pp. 105109.

    Article  Google Scholar 

  24. [24] D.E. Jiang, E.A. Carter, Phys. Rev. B, 2003, vol. 67, pp 111.

    Article  Google Scholar 

  25. N.G. Shaposhnikov, B.M. Mogutnov, Russ. Metall., 2008, vol. 2008, no.2, pp. 174-179.

    Article  Google Scholar 

  26. [27] F. Ghanem, C. Braham, H. Sidhom, J. Mater. Process. Technol., 2003, vol. 142, pp. 163173.

    Article  Google Scholar 

  27. J.P. Kruth, J. Van Humbeeck, L. Stevens, Proceedings of the ISEM XI, 1995, pp. 849–62.

  28. [28] L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Mater. Sci. Technol., 1991, vol. 7, pp. 239248.

    Article  Google Scholar 

  29. [29] E.D. Cabanillas, J. Desimoni, G. Punte, R.C. Mercader, Mater. Sci. Eng. A, 2000, vol. 276, pp. 133140.

    Article  Google Scholar 

  30. [30] H.T. Lee, T.Y. Tai, J. Mater. Process. Technol., 2003, vol. 142, no.3, pp. 676683.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Thailand Research Fund (TRF, contract number: MRG5280074), the Commission on Higher Education of Thailand (the National Research University Project), and the National Research Council of Thailand (NRCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apiwat Muttamara.

Additional information

Manuscript submitted August 6, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muttamara, A., Kanchanomai, C. Effect of Carbon in the Dielectric Fluid and Workpieces on the Characteristics of Recast Layers Machined by Electrical Discharge Machining. Metall Mater Trans A 47, 3248–3255 (2016). https://doi.org/10.1007/s11661-016-3452-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3452-4

Keywords

Navigation