Skip to main content
Log in

Microcompression Behaviors of Single Crystals Simulated by Crystal Plasticity Finite Element Method

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microcompression behavior of single-slip oriented, single-crystal micro-pillars was simulated using a crystal plasticity finite element method, by varying a primary slip-plane inclination angle from 36.3 to 48.7 deg while keeping the same primary slip system. Simulated global deformation of the micro-pillars was separated into two types, depending upon the primary slip-plane inclination angle: the one consistent with the primary slip direction and the other diagonally opposite to the primary slip direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Uchic MD, Dimiduk DM: Mater Sci Eng A, 2005, vol. 400-401, pp. 268–78.

    Article  Google Scholar 

  2. H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh: Scripta Mater, 2006, vol. 54, pp. 181–86.

    Article  Google Scholar 

  3. C. Rehrl, S. Kleber, T. Antretter and R. Pippan: J. Phyics: Conf. Series, 2010, vol. 240, pp. 012157.

    Google Scholar 

  4. H. Zhang, B.E. Schuster, Q. Wei, K.T. Ramesh: Scripta Mater, 2006, vol. 54, pp. 181–86.

    Article  Google Scholar 

  5. D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy: Acta Mater, 2005, vol. 53, pp. 4065–77.

    Article  Google Scholar 

  6. Michael D. Uchic, Dennis M. Dimiduk: Mater Sci Eng A, 2005, vol. 400-401, pp. 268–78.

    Article  Google Scholar 

  7. Y. Yang, J.C. Ye, J. Lu, F.X. Liu, P.K. Liaw: Acta Mater, 2009, vol.57, pp. 1613–23.

    Article  Google Scholar 

  8. Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitino and R. Radovitzky: Int. J. Plasticity, 2008, vol. 24, pp. 2278–97.

    Article  Google Scholar 

  9. P.A. Shade, M.D. Uchic, D.M. Dimiduk, G.B. Viswanathan, R. Wheeler, H.L. Fraser: Mater Sci Eng A, 2012, vol. 535, pp. 53–61.

    Article  Google Scholar 

  10. Y.S. Choi, T.A. Parthasarathy, D.M. Dimiduk, M.D. Uchic: Mater Sci Eng A, 2005, vol. 397, pp. 69–83.

    Article  Google Scholar 

  11. Y.S. Choi, M.D. Uchic, T.A. Parthasarathy, D.M. Dimiduk: Scripta Mater, 2007, vol. 57, pp. 849–52.

    Article  Google Scholar 

  12. D. Raabe, D. Ma, F. Roters: Acta Mater, 2007, vol. 55, pp. 4567–83.

    Article  Google Scholar 

  13. R. Maaß, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven, D. Raabe: Acta Mater, 2009, vol. 57, pp. 5996–6005.

    Article  Google Scholar 

  14. D. Peirce, R.J. Asaro, A. Needleman: Acta Mater, 1982, vol. 30, pp. 1087–119.

    Article  Google Scholar 

  15. E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos, M. Bornert and D. Caldemaison: Int. J. Plasticity, 2007, vol. 23, pp. 1512–39.

    Article  Google Scholar 

  16. D. Peirce, R.J. Asaro, A. Needleman: Acta Mater, 1983, vol. 31, pp. 1951–76.

    Article  Google Scholar 

  17. Y. Zhou, K.W. Neale, L.S. Toth: Int. J. Plasticity, 1993, vol. 9, pp. 961–78.

    Article  Google Scholar 

  18. Hirth, J.P., Lothe, J.: 1982, “Theory of Dislocations”. MacGraw-Hill, New York.

    Google Scholar 

  19. P. Franciosi, A. Zaoui: Acta Mater, 1982, vol. 30, pp. 2141–51.

    Article  Google Scholar 

  20. P. Franciosi, A. Zaoui: Acta Mater, 1982, vol. 30, pp. 1627–37.

    Article  Google Scholar 

  21. H. Mecking, U.F. Kocks: Acta Mater, 1981, vol. 29, pp. 173.

    Article  Google Scholar 

  22. P. Shanthraj, M.A. Zikry: Acta Mater, 2011, vol. 59, pp. 7695–702.

    Article  Google Scholar 

  23. S.A. Tajalli, M.R. Movahhedy, J. Akbari: Comput. Mater. 86, 2014, vol. 86, pp. 79–87

    Article  Google Scholar 

  24. Y. Huang: “A User-material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program”, Harvard Univ., 1991.

  25. M. Kuroda: Acta Mater, 2013, vol. 61, pp. 2283–88.

    Article  Google Scholar 

  26. M. Kuroda, V. Tvergaard: Int J Solids Struct, 2009, vol. 46, pp. 4396–408.

    Article  Google Scholar 

  27. P.A. Shade, R. Wheeler, Y.S. Choi, M.D. Uchic, D.M. Dimiduk, H.L. Fraser: Acta Mater, 2009, vol. 57, pp. 4580–87.

    Article  Google Scholar 

Download references

This study was supported financially by Fundamental Research Program of the Korean Institute of Materials Science (KIMS), and by Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2009-00495).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Additional information

Manuscript submitted April 11, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, JH., Na, YS., Cho, KM. et al. Microcompression Behaviors of Single Crystals Simulated by Crystal Plasticity Finite Element Method. Metall Mater Trans A 46, 4834–4840 (2015). https://doi.org/10.1007/s11661-015-3092-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3092-0

Keywords

Navigation