Skip to main content
Log in

Analysis of Precipitation Kinetics on the Basis of Particle-Size Distributions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model for the description of precipitation kinetics is presented and applied to experimental data for the evolution of the particle-size distribution in a dilute model system (Cu-Co) upon isothermal annealing at different temperatures. For coupling nucleation kinetics and growth kinetics, the model includes a recently proposed inverse evaluation method for consistent and numerically efficient evaluation of the thermodynamics of both nucleation and growth. Using the experimental data for the evolution of the particle-size distributions, obtained at least at two different temperatures, as a reference, unique and physically reasonable values for, at least, the interface energy and the activation energies for nucleation and growth can be obtained. The sensitivity of the kinetic model fitting to precise description of the thermodynamics of the particle–matrix system and the inferiority of kinetic model fitting to average data, such as data for the mean particle radius, have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In extreme cases, the unphysical scenario can emerge that a particle once generated by nucleation is inherently unstable with respect to growth and, in this flawed model scenario, immediately begins to dissolve.

  2. In the present work, the Gibbs energy is used to describe the energy content change of the system considered because of experimental control of \(p\) and \(T\).

  3. Lattice parameters \(a^{j}\) and atomic volumes \(V^{j}\) of the phases \(j = \upalpha ,\,\upbeta \) are taken as being composition-independent.

  4. in case of a binary system; for multinary systems cf. Reference 1.

  5. A size dependency of the interface energy, as sometimes found to be necessary to model the growth kinetics in later stages of the precipitation reaction (e.g., Reference 32), can be implemented by re-deriving \(r^*\) from Eq. [5] with \(\gamma = \gamma (r)\).

  6. i.e., a description of the chemical Gibbs energies of \(\upalpha \) and \(\upbeta \), or of the corresponding activity coefficients, as function of alloy composition and temperature

  7. As compared to a representation of the data as histograms, the KDE approach avoids classification of the PSD into fixed, discrete particle-size classes.

  8. This is in particular caused by the different dependency of the size relation \(r(\Delta g_{\text{c}}(x^{\upalpha }), \gamma , \Delta g_{\text{el}})\) on \(\gamma \) and \(\Delta g_{\text{el}}\) (Eq. [6]).

  9. This, of course, can be ascribed to the experimentally cumbersome determination of the evolution of the PSD as function of annealing time and temperature by using direct imaging techniques (as employed in the present case) or by its extraction from primary experimental data (e.g., in case of scattering experiments).[35]

  10. In case of the nucleation rate, changes in \(D_{\text{N,0}}\) also affect the time lag \(\tau \) (with \(\exp ( - \tau / t)\) varying between 0 and 1); the nucleation rate thus does not scale exactly linearly with \(D_{\text{N,0}}\).

  11. A variation of both activation energy and corresponding pre-factor is numerically underdetermined at constant \(T\).

  12. Indeed, even with the full flexibility of the kinetic model provided by three fit parameters, it was not possible to achieve a model description for the experimental data at T = 748 K (475 °C) of a quality similar to that achieved at the higher temperatures. As a consequence, application of the model to different combinations of experimental datasets including the data at the lowest temperature also leads to unsatisfactory modeling results.

References

  1. B. Rheingans and E.J. Mittemeijer: CALPHAD, 2015, DOI:10.1016/j.calphad.2015.04.013

  2. R. Kampmann and R. Wagner: in Decomposition of Alloys: the Early Stages, P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby, eds., Pergamon Press, Oxford, 1984, pp. 91–103

  3. M. Volmer, A. Weber, Z. Phys. Chem. 119, 277–301 (1926)

    Google Scholar 

  4. R. Becker, W. Döring, Ann. Phys. 24, 719–752 (1935)

    Article  Google Scholar 

  5. C. Zener, J. Appl. Phys. 20, 950–953 (1949)

    Article  Google Scholar 

  6. H.B. Aaron, D. Fainstein, G.R. Kotler, J. Appl. Phys. 41, 4404–4410 (1970)

    Article  Google Scholar 

  7. J.D. Robson, Acta Mater. 52, 4669–4676 (2004)

    Article  Google Scholar 

  8. Z. Liu, V. Mohles, O. Engler, G. Gottstein, Comput. Mater. Sci. 81, 410–417 (2014)

    Article  Google Scholar 

  9. J.W. Gibbs, The Collected Works of J (Green and Co., Williard Gibbs, Longmans, 1906)

    Google Scholar 

  10. V.A. Phillips, J.D. Livingston, Philos. Mag. 7, 969–980 (1962)

    Article  Google Scholar 

  11. M. Takeda, N. Suzuki, G. Shinohara, T. Endo, J. van Landuyt, Phys. Status Solidi A 168, 27–35 (1998)

    Article  Google Scholar 

  12. I.S. Servi, D. Turnbull, Acta Metall. Mater. 14, 161–169 (1966)

    Article  Google Scholar 

  13. F.K. Legoues, H.I. Aaronson, Acta Metall. 32, 1855–1864 (1984)

    Article  Google Scholar 

  14. M. Breu, W. Gust, B. Predel, Z. Metallkd. 82, 279–288 (1991)

    Google Scholar 

  15. W. Wagner, Acta Metall. Mater. 38, 2711–2719 (1990)

    Article  Google Scholar 

  16. T. Ebel, R. Kampmann, R. Wagner, J. Phys. IV 3, 295–298 (1993)

    Google Scholar 

  17. G. Goerigk, H.G. Haubold, W. Schilling, J. Appl. Crystallogr. 30, 1041–1047 (1997)

    Article  Google Scholar 

  18. X.D. Jiang, W. Wagner, H. Wollenberger, Z. Metallkd. 82, 192–197 (1991)

    Google Scholar 

  19. R. Hattenhauer, F. Haider, Scr. Metall. Mater. 25, 1173–1178 (1991)

    Article  Google Scholar 

  20. R.P. Setna, J.M. Hyde, A. Cerezo, G.D.W. Smith, M.F. Chisholm, Appl. Surf. Sci. 67, 368–379 (1993)

    Article  Google Scholar 

  21. R.P. Setna, A. Cerezo, J.M. Hyde, G.D.W. Smith, Appl. Surf. Sci. 76, 203–212 (1994)

    Article  Google Scholar 

  22. A. Heinrich, T. Al-Kassab, R. Kirchheim, Surf. Interface Anal. 39, 240–245 (2007)

    Article  Google Scholar 

  23. F.K. Legoues, H.I. Aaronson, Y.W. Lee, Acta Metall. 32, 1845–1853 (1984)

    Article  Google Scholar 

  24. F.K. Legoues, Y.W. Lee, H.I. Aaronson, Acta Metall. 32, 1837–1843 (1984)

    Article  Google Scholar 

  25. H.I. Aaronson, F.K. Legoues, Metall. Trans. A 23, 1915–1945 (1992)

    Article  Google Scholar 

  26. R. Hattenhauer, P. Haasen, Philos. Mag. A 68, 1195–1213 (1993)

    Article  Google Scholar 

  27. M.J. Stowell, Mater. Sci. Technol. 18, 139–144 (2002)

    Article  Google Scholar 

  28. J.D. Robson, Mater. Sci. Technol. 20, 441–448 (2004)

    Article  Google Scholar 

  29. J.D. Robson, M.J. Stowell, Philos. Mag. 84, 3101–3115 (2004)

    Article  Google Scholar 

  30. J. Feder, K.C. Russell, J. Lothe, G.M. Pound, Adv. Phys. 15, 111–178 (1966)

    Article  Google Scholar 

  31. M. Hillert: in Lectures on the Theory of Phase Transformations (1975), H.I. Aaronson, ed., 2nd ed., The Minerals, Metals and Materials Society, Warrendale, 1999, pp. 1–33

  32. Q. Du, W.J. Poole, M.A. Wells, Acta Mater. 60, 3830–3839 (2012)

    Article  Google Scholar 

  33. M. Perez, M. Dumont, D. Acevedo-Reyes, Acta Mater. 56, 2119–2132 (2008)

    Article  Google Scholar 

  34. M. Palumbo, S. Curiotto, L. Battezzati, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 30, 171–178 (2006)

    Article  Google Scholar 

  35. R. Wagner, R. Kampmann, and P.W. Voorhees: in Phase Transformations in Materials, G. Kostorz, ed., Wiley, Berlin, 2001, pp. 309–408

  36. J.D. Eshelby, Solid State Phys. 3, 79–144 (1956)

    Google Scholar 

  37. R. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum Press, 1996

    Book  Google Scholar 

  38. T. Malis, S.C. Cheng, R.F. Egerton, J. Electron. Micr. Tech. 8, 193–200 (1988)

    Article  Google Scholar 

  39. S. Matsumura, M. Toyohara, Y. Tomokiyo, Philos. Mag. A 62, 653–670 (1990)

    Article  Google Scholar 

  40. R. Döhl, M.P. Macht, V. Naundorf, Phys. Status Solidi A 86, 603–612 (1984)

    Article  Google Scholar 

  41. Y.W. Lee, K.C. Russell, H.I. Aaronson, Scr. Metall. 15, 723–726 (1981)

    Article  Google Scholar 

  42. G.J. Shiflet, Y.W. Lee, H.I. Aaronson, K.C. Russell, Scr. Metall. 15, 719–722 (1981)

    Article  Google Scholar 

  43. E.J. Mittemeijer, Fundamentals of Materials Science (Springer Verlag, Heidelberg, 2010)

    Google Scholar 

  44. F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Int. Mater. Rev. 52, 193–212 (2007)

    Article  Google Scholar 

  45. B. Rheingans, Y. Ma, F. Liu, E.J. Mittemeijer, J. Non-Cryst. Solids 362, 222–230 (2013)

    Article  Google Scholar 

  46. Y. Ma, B. Rheingans, F. Liu, E.J. Mittemeijer, J. Mater. Sci. 48, 5596–5606 (2013)

    Article  Google Scholar 

  47. B. Rheingans, E.J. Mittemeijer, JOM 65, 1145–1154 (2013)

    Article  Google Scholar 

  48. J.D. Robson, M.J. Jones, P.B. Prangnell, Acta Mater. 51, 1453–1468 (2003)

    Article  Google Scholar 

  49. A. Heinrich: Ph.D. Thesis, Georg-August-Universität zu Göttingen, 2005.

  50. J. W. Christian: The Theory of Transformations in Metals and Alloys, Pergamon Press, 2002

    Google Scholar 

  51. X.G. Lu, M. Selleby, B. Sundman, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 29, 68–89 (2005)

    Article  Google Scholar 

  52. Y.A. Chang, L. Himmel, J. Appl. Phys. 37, 3567–3572 (1966)

    Article  Google Scholar 

  53. B. Strauss, F. Frey, W. Petry, J. Trampenau, K. Nicolaus, S. Shapiro, J. Bossy, Phys. Rev. B 54, 6035–6038 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The Stuttgart Center for Electron Microscopy, Max Planck Institute for Intelligent Systems, Stuttgart, is gratefully acknowledged for access to TEM facilities. Dr. T. Bublat, formerly Max Planck Institute for Intelligent Systems, Stuttgart, is acknowledged for performing magnetisation measurements. One of the authors, BR, would like to thank Dr. E. A. Jägle, Max Planck Institute for Iron Research, Düsseldorf, for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastian Rheingans.

Additional information

Manuscript submitted January 14, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rheingans, B., Mittemeijer, E.J. Analysis of Precipitation Kinetics on the Basis of Particle-Size Distributions. Metall Mater Trans A 46, 3423–3439 (2015). https://doi.org/10.1007/s11661-015-2937-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2937-x

Keywords

Navigation