Skip to main content
Log in

Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, a new type of Cu-based shape memory alloys with the function of shape memory effect was successfully produced with the introduction of high-purity Co precipitates between the phases of Cu-Al-Ni shape memory alloy. The microstructure, transformation characteristics, and mechanical properties were systematically investigated by means of differential scanning calorimetry, field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The typical microstructures show that a new phase was formed, known as the γ 2 phase, and the volume friction and the size of this phase were gradually increased with the increasing Co content. According to the results of the XRD and EDS, it was confirmed that the γ 2 phase represents a compound of Al75Co22Ni3. However, the presence of γ 2 phase in the modified alloys was found to result in an increase of the transformation temperatures in comparison with the unmodified alloy. Nevertheless, it was found that with 1 wt pct of Co addition, a maximum ductility of 7 pct was achieved, corresponding to an increase in the strain recovery by the shape memory effect to 95 pct with respect to the unmodified alloy of 50 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Gandhi and B.S. Thompson, Smart Materials and Structures, Springer, London, London, 1992.

    Google Scholar 

  2. K. Otsuka and C.M. Wayman, Shape Memory Materials, reprint, Illustrated ed., Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  3. Z. Nishiyama, M.E. Fine, C.M. Wayman: Martensitic Transformation, Academic Press, New York, 1978.

    Google Scholar 

  4. A. Ibarra, J.S. Juan, E.H. Bocanegra, M.L. Nó, Materials Science and Engineering: A, 2006, 438-440, pp. 782-786.

    Article  Google Scholar 

  5. V. Recarte, J.I. Pérez-Landazábal, M.L. Nó, and J. SanJuan: Mater. Sci. Eng. A, 2004, vol. 370, pp. 488–91.

    Article  Google Scholar 

  6. J. Font, E. Cesari, J. Muntasell, J. Pons, Materials Science and Engineering: A, 2003, 354, pp. 207-211.

    Article  Google Scholar 

  7. J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, M.L. Nó, J.S. Juan, Materials Science and Engineering: A, 2006, 438-440,pp. 734-737.

    Article  Google Scholar 

  8. V. Sampath, Smart Materials and Structures, 2005, 14, pp. S253-S260.

    Article  Google Scholar 

  9. J.S. Lee, C.M. Wayman, Transactions of the Japan Institute of Metals, 1986, 27, pp. 584-591.

    Article  Google Scholar 

  10. M.A. Morris, S. Gunter, Scripta Metallurgica et Materiala, 1992, 26(11), pp. 1663-1668.

    Article  Google Scholar 

  11. U. Sarı, T. Kırındı, Materials Characterization, 2008, 59, pp. 920-929.

    Article  Google Scholar 

  12. K. Yildiz, M. Kok, Journal of Thermal Analysis and Calorimetry, 2014, 115, pp. 1509-1514.

    Article  Google Scholar 

  13. Z. Karagoz, C.A. Canbay, Journal of Thermal Analysis and Calorimetry, 2013, 114, pp. 1069-1074.

    Article  Google Scholar 

  14. Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, K. Ishida, Acta Materialia, 2005, 53, pp. 4121-4133.

    Article  Google Scholar 

  15. Y. Itsumi, Y. Miyamoto, T. Takashima, K. Kamei, K. Sugimoto, Advanced Materials Research, 1991, 56-58, pp. 469-474.

    Google Scholar 

  16. M.A. Morris, Scripta Metallugica, 1991, 25, pp. 1409-1414.

    Article  Google Scholar 

  17. K. Adachi, K. Shoji, Y. Hamada, ISIJ International, 1989, 29, pp. 378-387.

    Article  Google Scholar 

  18. D. W. Roh, J. W. Kim, T. J. Cho, Y. G. Kim, Materials Science and Engineering: A, 1991, 136, pp. 17-23.

    Article  Google Scholar 

  19. M.A. Morris, T. Lipe, Acta Metallurgica et Materialia, 1994, 42, pp. 1583-1594.

    Article  Google Scholar 

  20. S. Saud, E. Hamzah, T. Abubakar, S. Farahany, Journal of Materials Engineering and Performance, 2013, 23, pp. 255-261.

    Article  Google Scholar 

  21. S.N. Saud, E. Hamzah, T.A. Abu Bakar, A. Abdolahi, Materials Science and Technology, 2014, 30, pp. 458-464.

    Article  Google Scholar 

  22. S. Saud, E. Hamzah, T. Abubakar, M. Zamri, and M. Tanemura: J. Therm. Anal. Calorim., 2014, vol. 118, pp. 111–12.

    Article  Google Scholar 

  23. U. Sarı, İ. Aksoy, Journal of Alloys and Compounds, 2006, 417, pp. 138-142.

    Article  Google Scholar 

  24. U. Sari, Int J Miner Metall Mater, 2010, 17, pp. 192-198.

    Article  Google Scholar 

  25. S.H. Chang, Mater. Chem. Phys., 2011, 125, pp. 358-363.

    Article  Google Scholar 

  26. N. Bergeon, G. Guenin, and C. Esnouf: J. Phys. IV Fr., 1997, vol. 7, pp. C5125–30.

    Article  Google Scholar 

  27. M. Eskil, N. Kayali, Materials Letters, 2006, 60, pp. 630-634.

    Article  Google Scholar 

  28. Yildirim Aydogdu, Ayse Aydogdu, Osman Adiguzel, Journal of Materials Processing Technology, 2002, 123, pp. 498-500.

    Article  Google Scholar 

  29. C.M. Friend, Scripta Metallurgica, 1989, 23, pp. 1817-1820.

    Article  Google Scholar 

  30. Q. Xuan, J. Bohong, T.Y. Hsu, Mater. Sci. Eng, 1997, 93, pp. 205-211.

    Article  Google Scholar 

  31. R.J. Salzbrenner, M. Cohen, Acta Metallurgica, 1979, 27, pp. 739-748.

    Article  Google Scholar 

  32. O. Adigüzel, Materials research bulletin, 1995, 30, pp. 755-760.

    Article  Google Scholar 

  33. Ş.N. Balo, N. Sel, Thermochimica Acta, 2012, 536, pp. 1-5.

    Article  Google Scholar 

  34. Y Gwon-Seung, LEE Jong-Kook, J Woo-Yang, Transactions of Nonferrous Metals Society of China, 2009, 19, pp. 979-983.

    Article  Google Scholar 

  35. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, Prentice Hall, Upper Saddle River, 2001.

    Google Scholar 

  36. A.L. Patterson, Physical Review, 1939, 56, pp. 978-982.

    Article  Google Scholar 

  37. S.Q. Zhang Xiangyang, Yu Shouwen, Journal of the Mechanics and Physics of Solids, 2000, 48, pp. 2163–2182.

    Article  Google Scholar 

  38. X. Zhang, L. Brinson, Q.-P. Sun, Smart materials and structures, 2000, 9, pp. 571.

    Article  Google Scholar 

  39. W. Wang, Z. Liu, J. Zhang, J. Chen, G. Wu, W. Zhan, T. Chin, G. Wen, X. Zhang, Physical Review B, 2002, 66, pp. 052411.

    Article  Google Scholar 

  40. S. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, Journal of Thermal Analysis and Calorimetry, 2015, 119, pp. 1273-1284.

    Article  Google Scholar 

  41. C. Tatar, Thermochim. Acta, 2005, 437, pp. 121-125.

    Article  Google Scholar 

  42. J. Ortín, A. Planes, Acta Metallurgica, 1989, 37, pp. 1433-1441.

    Article  Google Scholar 

  43. S. Miyazaki, K. Otsuka, H. Sakamoto, K. Shimizu, Transactions of the Japan Institute of Metals, 22 (1981) 244-252.

    Article  Google Scholar 

  44. G. Motoyasu, M. Kaneko, H. Soda, A. McLean, Metallurgical and Materials Transactions A, 32A (2001) 585-593.

    Article  Google Scholar 

  45. N. Yang, C. Laird, D.P. Pope, Metallurgical Transactions A, 8A (1977) 955-962.

    Article  Google Scholar 

  46. H. Funakubo, Shape Memory Alloys, CRC Press LLC, Boca Raton, 1987.

    Google Scholar 

  47. K. Otsuka, H. Sakamoto, K. Shimizu, Acta Metallurgica, 27 (1979) 585-601.

    Article  Google Scholar 

  48. S. Husain, P. Clapp, Journal of materials science, 22 (1987) 2351-2356.

    Article  Google Scholar 

  49. Q.P. Yang, L. Sun, Y.Z. Feng, Applied Mechanics and Materials, 71-78 (2011) 1707-1710.

    Article  Google Scholar 

  50. S. Gollerthan, M. Young, A. Baruj, J. Frenzel, W. Schmahl, G. Eggeler, Acta Materialia, 57 (2009) 1015-1025.

    Article  Google Scholar 

  51. K. Bhattacharya: Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, OUP, Oxford, 2003.

    Google Scholar 

  52. C.B. Churchill, J.A. Shaw, M.A. Iadicola, Experimental Techniques, 33 (2009) 70-78.

    Article  Google Scholar 

Download references

Acknowledgments

The author(s) would like to thank the Malaysian Ministry of Higher Education (MOHE) and Universiti Teknologi Malaysia for providing the financial support and facilities for the current research, under Grant No. R.J130000.7824.4F150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuty Asma Abu Bakar.

Additional information

Manuscript submitted October 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saud, S.N., Abu Bakar, T.A., Hamzah, E. et al. Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys. Metall Mater Trans A 46, 3528–3542 (2015). https://doi.org/10.1007/s11661-015-2924-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2924-2

Keywords

Navigation