Skip to main content

Advertisement

Log in

Microstructure Evolution and Mechanical Behavior of Cold-Sprayed, Bulk Nanostructured Titanium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To provide insight into the microstructural evolution and mechanical behavior of bulk nanostructured Ti, we used cold gas dynamic spraying of Ti particles to synthesize thick coatings (e.g., >10 mm in thickness). Accordingly, the grain size, lattice parameter, lattice strain, residual stress, porosity, microhardness, tensile, and compressive behavior of the bulk Ti deposits before and after annealing were comparatively analyzed. Our results show that the microstructure of the as-sprayed bulk Ti was characterized by a grain size of ~60 nm, lattice expansion (~2 pct for \( a \) and ~3 pct for \( c \)), lattice strain (~1.65 × 10−5), and residual compressive stress (~53 MPa). Moreover, annealing of the as-deposited bulk Ti led to a significant decrease in lattice expansion, lattice strain, and residual stress, whereas porosity remained unchanged (~11 pct). The mechanisms of grain growth, as well as the evolution of particle interfaces during annealing, were also investigated. In terms of mechanical behavior, the as-deposited bulk Ti exhibited a very low modulus (52 GPa) with relatively high tensile and compressive strength values (180 and 850 MPa, respectively). Annealing in the temperature range of 1023 K to 1173 K (750 °C to 900 °C) led to a significant increase of tensile and compressive strength (to 380 MPa and more than 1200 MPa, respectively). Finally, annealing resulted in a slight increase of elastic modulus, which was rationalized on the basis of changes in pore geometry in the bulk Ti deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.I. Raab, E.P. Soshnikova and R.Z. Valiev: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 674-77.

    Article  Google Scholar 

  2. W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur and K.J. Kurzydlowski: J. Mater. Process. Technol., 2008, vol. 205, pp. 173-82.

    Article  Google Scholar 

  3. Z. Li, L. Fu, B. Fu and A. Shan: Mater. Sci. Eng. A, 2012, vol. 558, pp. 309-18.

    Article  Google Scholar 

  4. V.S. Zhernakov, V.V. Latysh, V.V. Stolyarov, A.I. Zharikov and R.Z. Valiev: Scr. Mater., 2001, vol. 44, pp. 1771-74.

    Article  Google Scholar 

  5. J.-W. Park, Y.-J. Kim, C.H. Park, D.-H. Lee, Y.G. Ko, J.-H. Jang and C.S. Lee: Acta Biomater., 2009, vol. 5, pp. 3272-80.

    Article  Google Scholar 

  6. A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe and Y.T. Zhu: Scr. Mater., 2004, vol. 51, pp. 225-29.

    Article  Google Scholar 

  7. G. Ryan, A. Pandit and D.P. Apatsidis: Biomaterials, 2006, vol. 27, pp. 2651-70.

    Article  Google Scholar 

  8. J. Sun, Y. Han and K. Cui: Mater. Lett., 2008, vol. 62, pp. 3623-25.

    Article  Google Scholar 

  9. I.-H. Oh, N. Nomura, N. Masahashi and S. Hanada: Scr. Mater., 2003, vol. 49, pp. 1197-202.

    Article  Google Scholar 

  10. K. Kim, M. Watanabe, J. Kawakita and S. Kuroda: Scr. Mater., 2008, vol. 59, pp. 768-71.

    Article  Google Scholar 

  11. W.Y. Li, C. Zhang, H. Liao and C. Coddet: J. Coat. Technol. Res., 2009, vol. 6, pp. 401-06.

    Article  Google Scholar 

  12. R.C. Dykhuizen and M.F. Smith: J. Therm. Spray Technol., 1998, vol. 7, pp. 205-12.

    Article  Google Scholar 

  13. F. Gartner, T. Schmidt, T. Stoltenhoff and H. Kreye: Adv. Eng. Mater., 2006, vol. 8, pp. 611-618618.

    Article  Google Scholar 

  14. L. Ajdelsztajn, J. Schoenung, B. Jodoin and G. Kim: Metall. Mater. Trans. A, 2005, vol. 36, pp. 657-66.

    Article  Google Scholar 

  15. W. Wong, P. Vo, E. Irissou, A.N. Ryabinin, J.G. Legoux and S. Yue: J. Therm. Spray Technol., 2013, vol. 22, pp. 1140-53.

    Article  Google Scholar 

  16. T. Schmidt, F. Gärtner, H. Assadi and H. Kreye: Acta Mater., 2006, vol. 54, pp. 729-42.

    Article  Google Scholar 

  17. H. Assadi, T. Schmidt, H. Richter, J.O. Kliemann, K. Binder, F. Gärtner, T. Klassen and H. Kreye: J. Therm. Spray Technol., 2011, vol. 20, pp. 1161-76.

    Article  Google Scholar 

  18. Y. Liang, B. Shi, X. Yang, J. Zhang, and X. Meng: Acta Metall. Sin. (Engl. Lett.), 2011, vol. 24, pp. 190–94.

  19. X. Meng, J. Zhang, J. Zhao, Y. Liang and Y. Zhang: J. Mater. Sci. Technol., 2011, vol. 27, pp. 809-15.

    Article  Google Scholar 

  20. G.K. Rane, U. Welzel and E.J. Mittemeijer: Acta Mater., 2012, vol. 60, pp. 7011-23.

    Article  Google Scholar 

  21. E.J. Mittemeijer and P. Scardi: Diffraction Analysis of the Microstructure of Materials, Springer, Berlin, 2004.

    Book  Google Scholar 

  22. R.E. Dinnebier and S.J. Billinge: Powder diffraction: theory and practice, The Royal Society of Chemistry, Cambridge, 2008.

    Book  Google Scholar 

  23. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  Google Scholar 

  24. V. Biju, N. Sugathan, V. Vrinda and S.L. Salini: J Mater. Sci., 2008, vol. 43, pp. 1175-79.

    Article  Google Scholar 

  25. I.C. Noyan and J.B. Cohen: Residual stress : measurement by diffraction and interpretation, Springer-Verlag, New York 1987.

    Book  Google Scholar 

  26. P.S. Prevey: in Metals Handbook, vol. 10, American Society for Metals, Metals Park, OH, 1986, pp. 380–92.

  27. D. Goldbaum, J. Ajaja, R.R. Chromik, W. Wong, S. Yue, E. Irissou and J.-G. Legoux: Mater. Sci. Eng. A, 2011, vol. 530, pp. 253-65.

    Article  Google Scholar 

  28. A. Christou: Philos. Mag., 1972, vol. 26, pp. 97-111.

    Article  Google Scholar 

  29. H. Kressel and N. Brown: J. Appl. Phys., 1967, vol. 38, pp. 1618-25.

    Article  Google Scholar 

  30. O. Vohringer: in Advances in Surface Treatments Technology-Applications-Effects, A. Niku-Lari, ed., Pergamon Press, Oxford, 1987, pp. 367–96.

  31. H. Holzapfel, V. Schulze, O. Vöhringer and E. Macherauch: Mater. Sci. Eng. A, 1998, vol. 248, pp. 9-18.

    Article  Google Scholar 

  32. C. Ouchi, H. Iizumi and S. Mitao: Mater. Sci. Eng. A, 1998, vol. 243, pp. 186-95.

    Article  Google Scholar 

  33. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.

    Google Scholar 

  34. J.E. Burke and D. Turnbull: Prog. Met. Phys, 1952, vol. 3, pp. 220-92.

    Article  Google Scholar 

  35. E.A. Grey and G.T. Higgins: Acta Metall., 1973, vol. 21, pp. 309-21.

    Article  Google Scholar 

  36. C.K.S. Moy, J. Cairney, G. Ranzi, M. Jahedi and S.P. Ringer: Surf. Coat. Technol., 2010, vol. 204, pp. 3739-49.

    Article  Google Scholar 

  37. Y. Liu and B.R. Patterson: Acta Metall. Mater., 1993, vol. 41, pp. 2651-56.

    Article  Google Scholar 

  38. A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva and R.Z. Valiev: Scr. Mater., 1997, vol. 37, pp. 1089-94.

    Article  Google Scholar 

  39. K. Asaoka, N. Kuwayama, O. Okuno and I. Miura: J. Biomed. Mater. Res., 1985, vol. 19, pp. 699-713.

    Article  Google Scholar 

  40. H. Nakajima: Prog. Mater. Sci., 2007, vol. 52, pp. 1091-173.

    Article  Google Scholar 

  41. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 303, pp. 82-89.

    Article  Google Scholar 

  42. R.W. Rice: J Mater. Sci., 1997, vol. 32, pp. 4731-36.

    Article  Google Scholar 

  43. M.J. Hordon, B.S. Lement and B.L. Averbach: Acta Metall., 1958, vol. 6, pp. 446-53.

    Article  Google Scholar 

  44. J.S. Wallace and J. Ilavsky: J. Therm. Spray Technol., 1998, vol. 7, pp. 521-26.

    Article  Google Scholar 

  45. Z. Li, L. Fu, B. Fu, X. Yang and A. Shan: J. Nanosci. Nanotechno., 2014, vol. 14, pp. 7740-44.

    Article  Google Scholar 

  46. L.F. Nielsen: J. Am. Ceram. Soc., 1984, vol. 67, pp. 93-98.

    Article  Google Scholar 

  47. B.V. Krishna, S. Bose and A. Bandyopadhyay: Acta Biomater., 2007, vol. 3, pp. 997-1006.

    Article  Google Scholar 

  48. K. Kim, S. Kuroda, M. Watanabe, R. Huang, H. Fukanuma and H. Katanoda: J. Therm. Spray Technol., 2012, vol. 21, pp. 550-60.

    Article  Google Scholar 

  49. Y. Song, Z.X. Guo and R. Yang: Philos. Mag. A, 2002, vol. 82, pp. 1345-59.

    Google Scholar 

Download references

Acknowledgments

The authors (ZL, XY, JZ, and AS) would like to acknowledge support from National Natural Science Foundation of China (50671062) and Baoshan Iron & Steel Co., Ltd. The financial support (ZL, BL, YZ and EJL) from the US National Science Foundation (NSF DMR-1210437) is also gratefully appreciated. Furthermore, the author (ZL) would like to thank the financial support from the China Scholarship Council (No. 201306230030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Li or Aidang Shan.

Additional information

Manuscript submitted January 12, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, X., Zhang, J. et al. Microstructure Evolution and Mechanical Behavior of Cold-Sprayed, Bulk Nanostructured Titanium. Metall Mater Trans A 45, 5017–5028 (2014). https://doi.org/10.1007/s11661-014-2434-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2434-7

Keywords

Navigation