Skip to main content
Log in

Statistical Quantification of the Impact of Surface Preparation on Yield Point Phenomena in Nickel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanoindentation was used to evaluate the effect of three surface preparation techniques—mechanical polishing, electropolishing, and ion polishing—on experimental measurements of incipient plasticity in commercially pure Ni 200. Surface preparation techniques are linked to defect densities, estimated with image quality (IQ) and kernel average misorientation (KAM) data obtained from electron backscatter diffraction patterns and the Taylor relation. Minimum yield pressures are insensitive to surface preparation, while mean yield pressure depends on dislocation density, and the maximum yield pressure is likely influenced by defects other than dislocations. KAM coupled with IQ may be a useful non-destructive parameter to relate surface defect density to the resulting changes in the spatial variability of incipient plasticity during a nanoindentation experiment. This analysis makes the assumption that geometrically necessary dislocation density is proportional to total dislocation density; in cases where this condition is not satisfied, the KAM analysis may not be valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Gane and F.P. Bowden: J. Appl. Phys., 1968, vol. 39, p. 1432–35.

    Article  Google Scholar 

  2. S.K. Venkataraman, D.L. Kohlstedt, and W.W. Gerberich: J. Mater. Res., 1993, vol. 8, pp. 685–88.

    Article  Google Scholar 

  3. A.A. Zbib and D.F. Bahr: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2249–55.

    Article  Google Scholar 

  4. T. Zhu and J. Li: Prog. Mater. Sci., 2010, vol. 55, pp. 710–57.

    Article  Google Scholar 

  5. C. Kelchner, S. Plimpton, and J. Hamilton: Phys. Rev. B, 1998, vol. 58, pp. 11085–88.

    Article  Google Scholar 

  6. C.A. Schuh and A.C. Lund: J. Mater. Res., 2004, vol. 19, pp. 2152–58.

    Article  Google Scholar 

  7. W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3–20.

    Article  Google Scholar 

  8. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Nature, 2002, vol. 418, pp. 307–10.

    Article  Google Scholar 

  9. D.A. Lucca, M.J. Klopfstein, R. Ghisleni, and G. Cantwell: Ann. CIRP, 2002, vol. 51, pp. 483–86.

    Article  Google Scholar 

  10. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Acta Mater., 1998, vol. 46, pp. 3605–17.

    Article  Google Scholar 

  11. J. Yan, H. Takahashi, J. Tamaki, X. Gai, H. Harada, and J. Patten: Appl. Phys. Lett., 2005, vol. 86, p. 181913.

    Article  Google Scholar 

  12. M.A. Lodes, A. Hartmaier, M. Göken, and K. Durst: Acta Mater., 2011, vol. 59, pp. 4264–73.

    Article  Google Scholar 

  13. T.F. Page, W.C. Oliver, and C.J. McHargue: J. Mater. Res., 2011, vol. 7, pp. 450–73.

    Article  Google Scholar 

  14. Z. Wang, H. Bei, E.P. George, and G.M. Pharr: Scripta Mater., 2011, vol. 65, pp. 469–72.

    Article  Google Scholar 

  15. A. Barnoush, M.T. Welsch, and H. Vehoff: Scripta Mater., 2010, vol. 63, pp. 465–68.

    Article  Google Scholar 

  16. S. Shim, H. Bei, E.P. George, and G.M. Pharr: Scripta Mater., 2008, vol. 59, pp. 1095–98.

    Article  Google Scholar 

  17. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, and G.D. W. Smith: Ultramicroscopy, 1999, vol. 79, pp. 287–93.

    Article  Google Scholar 

  18. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm: Mater. Sci. Eng. A, 2007, vol. 459, pp. 262–72.

    Article  Google Scholar 

  19. G. Poldi, S. Beuer, M. Rommel, V. Yanev, A.J. Bauer, and H. Ryssel: Microelectron. Eng., 2009, vol. 86, pp. 548–51.

    Article  Google Scholar 

  20. H. Bei, S. Shim, M. K. Miller, G. M. Pharr, and E. P. George: Appl. Phys. Lett., 2007, vol. 91, p. 111915.

    Article  Google Scholar 

  21. L.A. Giannuzzi, R. Geurts, and J. Ringnalda: Microsc. Microanal., 2005, vol. 11, pp. 2004–05.

    Google Scholar 

  22. J. Scott, F.T. Docherty, M. MacKenzie, W. Smith, B. Miller, C.L. Collins, and A.J. Craven: J. Phys. Conf. Ser., 2006, vol. 26, pp. 223–26.

    Article  Google Scholar 

  23. S.T. Wardle, L.S. Lin, A. Cetel, and B.L. Adams: in Proceedings of 52nd Annual Meeting of the Microscopy Society of America, G.W. Bailey and A.J. Garratt-Reed, eds., San Francisco Press, San Fransisco, 1994, pp. 680–81.

  24. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  25. L.P. Kubin and A. Mortensen: Scripta Mater., 2003, vol. 48, pp. 119–25.

    Article  Google Scholar 

  26. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

  27. S.I. Wright, D.F. Field, and D.J. Dingley: Electron Backscatter Diffraction in Materials Science, chap. 13, Kluwer, New York, 2000.

  28. D.A. Hughes, N. Hansen, and D.J. Bammann: Scripta Mater., 2003, vol. 48, pp. 147–53.

    Article  Google Scholar 

  29. J.W. Taylor: J. Appl. Phys., 1965, vol. 36, p. 3146–50.

    Article  Google Scholar 

  30. D. Tabor: The Hardness of Metals, Oxford University Press, Oxford, 1951, p. 105.

  31. B.S. El-Dasher, B.L. Adams, and A.D. Rollett: Scripta Mater., 2003, vol. 48, pp. 141–45.

    Article  Google Scholar 

  32. P.D. Littlewood, T.B. Britton, and A.J. Wilkinson: Acta Mater., 2011, vol. 59, pp. 6489–500.

    Article  Google Scholar 

  33. N. Gane and J.M. Cox: Philos. Mag., 1970, vol. 22, pp. 0881–91.

    Article  Google Scholar 

  34. Q. Ma and D.R. Clarke: J. Mater. Res., 1995, vol. 10, pp. 853–63.

  35. K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, U.K., 1985.

    Book  Google Scholar 

  36. D.F. Bahr, S.L. Jennerjohn, and D.J. Morris: JOM J. Miner. Met. Mater. Soc., 2009, vol. 61, pp. 56–60.

    Article  Google Scholar 

  37. L. Ma, D.J. Morris, S.L. Jennerjohn, D.F. Bahr, and L. Levine: J. Mater. Res., 2009, vol. 24, pp. 1059–68.

    Article  Google Scholar 

  38. E.L. Lehmann: Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, Inc., San Francisco, 1975.

    Google Scholar 

  39. W.C. Oliver and G. M. Pharr: J. Mater. Res, 1992, vol. 7, pp. 1564–83.

    Article  Google Scholar 

  40. S.K. Lawrence, D.F. Bahr, and H.M. Zbib: J. Mater. Res., 2012, vol. 27, pp. 3058–65.

    Article  Google Scholar 

  41. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Phys. Rev. B, 1997, vol. 55, pp. R16057–60.

    Article  Google Scholar 

  42. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. Leipner: Phys. Rev. B, 2003, vol. 67, pp. 1–4.

    Article  Google Scholar 

  43. T.L. Li, Y.F. Gao, H. Bei, and E.P. George: J. Mech. Phys. Solids, 2011, vol. 59, pp. 1147–62.

    Article  Google Scholar 

  44. K.J. Ramos, D.E. Hooks, and D.F. Bahr: Philos. Mag., 2009, vol. 89, pp. 2381–402.

    Article  Google Scholar 

  45. A.H.W. Ngan, L. Zuo, and P.C. Wo (2006) Scripta Mater., 54(4), pp. 589–93.

    Article  Google Scholar 

  46. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Acta Mater., 2008, vol. 56, pp. 4762–70.

    Article  Google Scholar 

  47. T.L. Li, H. Bei, J.R. Morris, E.P. George, and Y.F. Gao: Mater. Sci. Technol., 2012, vol. 28, pp. 1055–59.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation under grant NSF/CMMI 1030843 (SKL, DFB and HMZ). The authors would like to thank Dr. David P. Field for the helpful insight concerning the KAM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Bahr.

Additional information

Manuscript submitted October 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrence, S.K., Zbib, H.M., Cordill, M.J. et al. Statistical Quantification of the Impact of Surface Preparation on Yield Point Phenomena in Nickel. Metall Mater Trans A 45, 4307–4315 (2014). https://doi.org/10.1007/s11661-014-2382-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2382-2

Keywords

Navigation