Skip to main content
Log in

Kinetic Pathways of Phase Transformations in Two-Phase Ti Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Possible phase transformation kinetic pathways from the high temperature β phase to the low temperature (α + β) two-phase Ti alloys were analyzed using the graphical thermodynamic method and the assumption that diffusionless and displacive transformations take place much faster than phase separation which requires long-range diffusion. It is shown that depending on the composition of a β-stabilizing element, many transformation mechanisms are possible, involving competing continuous and discontinuous displacive/diffusional transformations. We discuss the proposed phase transformation sequences employing existing experimental microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams: Titanium, 2nd ed., Springer, Berlin, 2007.

    Google Scholar 

  2. G. Lütjering: Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45.

    Article  Google Scholar 

  3. I.B. Ramsteiner, A. Schöps, F. Phillipp, M. Kelsch, H. Reichert, and H. Dosch: Phys. Rev. B, 2006, vol. 73, pp. 024204.

    Article  Google Scholar 

  4. H.M. Flower: Mater. Sci. Tech., 1990, vol. 6, pp. 1082-92.

    Article  Google Scholar 

  5. H.I. Aaronson, W.B. Triplett, and G.M. Andes: Trans. AIME, 1957, vol. 209, pp. 1227-35.

    Google Scholar 

  6. M.J. Blackburn and J.C. Williams: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 2461-69.

    Google Scholar 

  7. M.K. Koul and J.F. Breedis: Acta Metall., 1970, vol. 18, pp. 579-88.

    Article  Google Scholar 

  8. W. Fuming and H.M. Flower: Mater. Sci. Tech., 1989, vol. 5, pp. 1172–77.

    Article  Google Scholar 

  9. D.L. Moffat and D.C. Larbalestier: Metall. Trans. A, 1988, vol. 19A, pp. 1677-86.

    Article  Google Scholar 

  10. D.L. Moffat and D.C. Larbalestier: Metall. Trans. A, 1988, vol. 19A, pp. 1687-94.

    Article  Google Scholar 

  11. E.S.K. Menon and R. Krishnan: J. Mater. Sci., 1983, vol. 18, pp. 365-74.

    Article  Google Scholar 

  12. E.S.K. Menon and R. Krishnan: J. Mater. Sci., 1983, vol. 18, pp. 375-82.

    Article  Google Scholar 

  13. M.A. Dyakova, E.A. Lvova, I.N. Kaganovich, Z.F. Zvereva, and L.S. Meshchaninova: Russian Metall., 1977, pp. 122–26.

  14. C.G. Rhodes and J.C. Williams: Metall. Trans. A, 1975, vol. 6A, pp. 2103-14.

    Article  Google Scholar 

  15. Z. Fan and A.P. Miodownik: J. Mater. Sci., 1994, vol. 29, pp. 6403-12.

    Article  Google Scholar 

  16. S.M.C. van Bohemen, J. Sietsma, and S.v.d. Zwaag: Phys. Rev. B, 2006, vol. 74, pp. 134114.

  17. A.G. Khachaturyan, T.F. Lindsey, and J.W. Morris: Metall. Trans. A, 1988, vol. 19A, pp. 249-58.

    Article  Google Scholar 

  18. W.A. Soffa and D.E. Laughlin: Acta Metall., 1989, vol. 37, pp. 3019-28.

    Article  Google Scholar 

  19. D. Fan and L.-Q. Chen: J. Am. Ceram. Soc., 1995, vol. 78, pp. 1680-86.

    Article  Google Scholar 

  20. Y. Ni, Y.M. Jin, and A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 4903-14.

    Article  Google Scholar 

  21. Y. Wang, N. Ma, Q. Chen, F. Zhang, S.-L. Chen, and Y.A. Chang: JOM, 2005, vol. 57, pp. 32–39.

    Article  Google Scholar 

  22. Q. Chen, N. Ma, K. Wu, and Y. Wang: Scripta Mater., 2004, vol. 50, pp. 471–76.

    Article  Google Scholar 

  23. R.B. Gullberg, R. Taggart, and D.H. Polonis: J. Mater. Sci., 1971, vol. 6, pp. 384–89.

    Article  Google Scholar 

  24. R. Davis, H.M. Flower, and D.R.F. West: J. Mater. Sci., 1979, vol. 14, pp. 712–22.

    Google Scholar 

  25. J.W. Cahn: Acta Metall., 1961, vol. 9, pp. 795–801.

    Article  Google Scholar 

  26. P.D. Frost, W.M. Parris, L.L. Hirsch, J.R. Doig, and C.M. Schwartz: Trans. ASM, 1954, vol. 46, pp. 231–56.

    Google Scholar 

  27. G. Aurelio, A.F. Guillermet, G.J. Cuello, and J. Campo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1307–17.

    Article  Google Scholar 

  28. F.R. Brotzen, E.L. Harmon, and A.R. Troiano: Trans. AIME, 1955, vol. 203, pp. 413–19.

    Google Scholar 

  29. J.H. Zuo, Z.G. Wang, and E.H. Han: Mater. Sci. Eng. A, 2008, vol. 473, pp. 147–52.

    Article  Google Scholar 

  30. N. Stanford and P.S. Bate: Acta Mater., 2004, vol. 52, pp. 5215–24.

    Article  Google Scholar 

  31. L.J. Huang, L. Geng, A.B. Li, G.S. Wang, and X.P. Cui: Mater. Sci. Eng. A, 2008, vol. 489A, pp. 330–36.

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Center for Computational Materials Design (CCMD), a joint National Science Foundation (NSF) Industry/University Cooperative Research Center at Penn State (IIP-1034965) and Georgia Tech (IIP-1034968).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Wook Heo.

Additional information

Manuscript submitted February 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heo, T.W., Shih, D.S. & Chen, LQ. Kinetic Pathways of Phase Transformations in Two-Phase Ti Alloys. Metall Mater Trans A 45, 3438–3445 (2014). https://doi.org/10.1007/s11661-014-2269-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2269-2

Keywords

Navigation