Skip to main content
Log in

Design of the Precipitation Process for Ni-Al Alloys with Optimal Mechanical Properties: A Phase-Field Study

  • Symposium: International Workshop on Materials Design Process: Thermodynamics, Kinetics and Microstructure Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An attempt to design the heat treatment schedule for binary Ni-Al alloys with optimal mechanical properties was made in the present work. A series of quantitative three-dimensional (3-D) phase-field simulations of microstructure evolution in Ni-Al alloys during the precipitation process were first performed using MICRESS (MICRostructure Evolution Simulation Software) package developed in the formalism of the multi-phase field model. The coupling to CALPHAD (CALculation of PHAse Diagram) thermodynamic and atomic mobility databases was realized via TQ interface. Moreover, the temperature-dependent lattice misfits and elastic constants were utilized for simulation. The effect of the alloy composition and aging temperature on microstructure evolution was extensively studied with the aid of statistical analysis. After that, an evaluation function was proposed for evaluating the optimal heat treatment schedule by choosing the phase fraction, grain size, and shape factor of γ′ precipitate as the evaluation indicators. Based on 50 groups of phase-field-simulated and experimental microstructure information, as well as the proposed evaluation function, the optimal alloy composition, aging temperature, and aging time for binary Ni-Al alloy with optimal mechanical properties were finally chosen. The successful application in the present Ni-Al alloys indicates that it is possible to design the optimal alloy composition and heat treatment for other binary and even multicomponent alloys with optimal mechanical properties based on the evaluation function and the sufficient microstructure information. Additionally, the combination of the present method and the key experiments can definitely accelerate the material design and improve the efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Wang and A.G.Khachaturyan: Acta Metall. Mater., 1995, vol.43, pp. 1837-57.

    Article  Google Scholar 

  2. Y.H. Wen, B. Wang, J.P. Simmons, and Y. Wang: Acta Mater., 2006, vol.54, pp. 2087-99.

    Article  Google Scholar 

  3. N. Zhou, C. Shen, M.J. Mills, and Y. Wang: Acta Mater., 2008, vol.56, pp. 6156-73.

    Article  Google Scholar 

  4. N. Warnken: Doctoral Dissertation, Rheinisch-WestfalischenTechnischen Hochschule Aachen (RWTH Aachen), Aachen, 2007.

  5. J.Z. Zhu, T. Wang, A.J. Ardell, S.H. Zhou, Z.K. Liu, and L.Q. Chen: Acta Mater., 2004, vol.52, pp. 2837–45.

    Article  Google Scholar 

  6. K. Wu, Y.A. Chang, and Y. Wang: Scripta Mater., 2004, vol.50, pp. 1145-50.

    Article  Google Scholar 

  7. N. Zhou, C. Shen, M.J. Mills, and Y. Wang: Phil. Mag., 2010, vol.90, pp. 405-36.

    Article  Google Scholar 

  8. I. Steinbach, F. Pezzolla, B. Nestler, and M. SeeBelberg: Physica, 1996, vol. 94D, pp. 135-47.

    Google Scholar 

  9. I. Steinbach and M. Apel: Physica, 2006, vol.217D, pp. 153-160.

    Google Scholar 

  10. I. Steinbach: Model. Simul. Mater. Sci. Eng., 2009, vol.17, pp. 073001.

    Article  Google Scholar 

  11. J. Eiken, B. Böttger, and I. Steinbach: Phys. Rev., 2006, vol.73E, pp. 066122.

    Google Scholar 

  12. J.-O. Anderson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol.26, pp. 273-312.

    Article  Google Scholar 

  13. A. Borgenstam, A. Engström, L. Höglund, and J. Ågren: J. Phase Equilib., 2000, vol.21, pp. 269-80.

    Article  Google Scholar 

  14. L. Zhang, I. Steinbach, and Y. Du: Int. J. Mater. Res, 2011, vol.102, pp. 371-80.

    Article  Google Scholar 

  15. I. Steinbach, L. Zhang, and M. Plapp: Acta Mater., 2012, vol.60, pp. 2689-701.

    Article  Google Scholar 

  16. L. Zhang and I. Steinbach: Acta Mater., 2012, vol.60, pp. 2689-701.

    Article  Google Scholar 

  17. Y. Du and N. Clavaguera: J. Alloys Compd., 1996, vol.247, pp. 20-30.

    Article  Google Scholar 

  18. L. Zhang, Y. Du, Q. Chen, and I. Steinbach: Int. J. Mater. Res., 2010, vol.101, pp. 1461-75.

    Article  Google Scholar 

  19. L. Zhang, Y. Du, Y. Yang, H. Xu, X. Lu, Y. Liu, Y. Kong, and J. Wang: Acta Mater., 2008, vol.56, pp. 3940-50.

    Article  Google Scholar 

  20. V. Vaithyanathan and L.Q. Chen: Acta Mater., 2002, vol.502, pp. 4061–73.

    Article  Google Scholar 

  21. A.B. Kamara, A.J. Ardell, and C.N.J. Wagner: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2888–96.

    Article  Google Scholar 

  22. S.V. Prikhodko, J.D. Carnes, D.G. Isaak, H. Yang, and A.J. Ardell: Metall. Mater. Trans. A, 1999, vol.30A, pp. 2403-08.

    Article  Google Scholar 

  23. B. Böttger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol.54, pp. 2697-704.

    Article  Google Scholar 

  24. MICRESS@: The MICRostructure Evolution Simulation Software. www.micress.de.

  25. J. Eiken : Int. J. Mater. Res., 2010, vol.101, pp. 503-09.

    Article  Google Scholar 

  26. W. Sun, S. Cui, L. Zhang, Y. Du, and B. Huang: Procedia Eng., 2012, vol.36, pp. 200-06.

    Article  Google Scholar 

  27. T. Rojhirunsakool, S. Meher, J.Y. Hwang, S. Nag, J. Tiley, and R. Banerjee: J. Mater. Sci., 2013, vol.48, pp. 825-31.

    Article  Google Scholar 

  28. K. Thornton, N. Akaiwa, and P.W. Voorhees: Acta Mater., 2004, vol.52, pp.1353-66.

    Article  Google Scholar 

  29. M. Fährmann, P. Fratzl, O. Paris, E. Fährmann, and W.C. Johnson: Acta Metall. Mater., 1995, vol.43, pp. 1007-021.

    Article  Google Scholar 

  30. Y.Y. Qiu: J. Alloys Compd.,1998, vol.270, pp. 145-53.

    Article  Google Scholar 

  31. E.Y. Plotnikov, Z. Mao, R.D. Noebe, and D.N. Seidman: Scripta Mater., 2013, vol.70, pp. 51-54.

    Article  Google Scholar 

  32. A.J. Ardell: Acta Metall., 1968, vol.16, pp. 511-16.

    Article  Google Scholar 

  33. H. Wendt, and P. Haasen, Acta Metall. Mater., 1983, vol.31, pp. 1649-59.

    Article  Google Scholar 

  34. D.H. Kirkwood: Acta Metall. Mater., 1970, vol.18, pp. 563-70.

    Article  Google Scholar 

  35. T. Hirata, and D.H. Kirkwood: Acta Metall. Mater., 1977, vol.25, pp. 1425-34.

    Article  Google Scholar 

  36. M. Nemoto, W.H. Tian, and T. Sano: J. Phys., 1991, vol. 1(III), pp. 1099–117.

  37. A. Maheshwari and A.J. Ardell: Acta Metall. Mater., 1992, vol.40, pp. 2661-67.

    Article  Google Scholar 

  38. M.E. Thompson, C.S. Su, and P.W. Voorhees: Acta Metall., 1994, vol.42, pp. 2107-22.

    Article  Google Scholar 

  39. Y. Wang and A.G. Khachaturyan: Acta Metall. Mater., 1995, vol.43, pp. 1837-57.

    Article  Google Scholar 

  40. Y.Y. Qiu: J. Mater. Sci., 1996, vol.31, pp. 4311-19.

    Article  Google Scholar 

  41. Z.F. Peng, Y.Y. Ren, and Q.S. Mei: Scripta Mater., 2000, vol.42, pp. 1059-64.

    Article  Google Scholar 

  42. Y. Ma and A.J. Ardell: Scripta Mater., 2005, vol.52, pp. 1335-40.

    Article  Google Scholar 

  43. R.N. Frank and R.N. Nabarro: Metall. Mater. Trans. A, 1996, vol.27A, pp. 513-30.

    Google Scholar 

  44. T. Niyazaki, H. Imamura, H. Mori, and T. Kozakai: J. Mater. Sci., 1981, vol.16, pp. 1197-203.

    Article  Google Scholar 

  45. T. Murakumo, T. Kobayashi, Y. Koizumi, and H. Harada: Acta Mater., 2004, vol.52, pp. 3737-44.

    Article  Google Scholar 

  46. R.R. Jensen and J.K. Tien: Metall. Trans. A, 1985, vol.16A, pp. 1049-68.

    Article  Google Scholar 

  47. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol.40, pp. 1-30.

    Article  Google Scholar 

  48. F. Diologent and P. Caron: Mater. Sci. Eng., 2004, vol.385A, pp. 245-57.

    Article  Google Scholar 

  49. J.S. Van Sluytman and T.M. Pollock: Acta Mater., 2012, vol.60, pp. 1771-83.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from National Natural Science Foundation for Youth of China (Grant No. 51301208), National Natural Science Foundation of China (Grant No. 51021063), Sino-German Center for Promotion of Science (Grant No. GZ755), and National Basic Research Program of China (Grant No. 2011CB610401). Lijun Zhang acknowledges the financial support from Shenghua Scholar Program of Central South University, Changsha, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Additional information

Manuscript submitted June 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ta, N., Zhang, L. & Du, Y. Design of the Precipitation Process for Ni-Al Alloys with Optimal Mechanical Properties: A Phase-Field Study. Metall Mater Trans A 45, 1787–1802 (2014). https://doi.org/10.1007/s11661-014-2192-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2192-6

Keywords

Navigation