Skip to main content
Log in

Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek–Kê–Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bordoni, P.G. (1949) Ric. Sci., 19(7), 851–62.

    Google Scholar 

  2. A. Seeger and W. Wasserbach: Mater. Tech., 2003, vols. 7–8–9, pp. 51–61.

  3. Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A) 124, pp. 155–70.

    Article  Google Scholar 

  4. Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A), 124, pp. 455–64.

    Article  Google Scholar 

  5. Brunner, D., Diehl, J. (1991) Phys. Status Solidi (A), 124, pp. 203-16.

    Article  Google Scholar 

  6. Seeger, A. (2004) Mater. Sci. Eng. A, 370 (1-2), pp. 50-66.

    Article  Google Scholar 

  7. Hahn, G.T. (1962) Acta Metall., 10 (8), pp. 727-38.

    Article  Google Scholar 

  8. Lee, S.-J., Kim, J., Kane, S.N., De Cooman, B.C., (2011) Acta Mater., 59 (17), pp. 6809-19.

    Article  Google Scholar 

  9. Brown, R.A., (1982) Can. J. Phys. 60, p. 766.

    Article  Google Scholar 

  10. Tanaka, K., Watanabe, T (1972) Jpn. J. Appl. Phys. 11(10), 1429–39.

    Article  Google Scholar 

  11. Yoshikawa, A., Okamoto, M., (1967) J. Phys. Soc. Jpn. 22 pp.996–1004.

    Article  Google Scholar 

  12. Karolik, A.S., Luhvich, A.A. (1994) J. Phys. Condens. Matter, 6 (4), pp. 873-86.

    Article  Google Scholar 

  13. Basinski, Z.S., Dugdale, J.S., Howie, A., (1963) Philos. Mag., 8 pp.1989–97.

    Article  Google Scholar 

  14. Nowick, A.S., Berry, B.S. (1972) Anelastic Relaxation in Crystalline Solids. New York: Academic Press.

    Google Scholar 

  15. Fuoss, R.M., Kirkwood J.G. (1952) J. Am. Chem. Soc., 63, pp. 385–94.

    Article  Google Scholar 

  16. Eloot, K., Dilewijns, J. (1997) ISIJ Int., 37 (6), pp. 610-14.

    Article  Google Scholar 

  17. Eloot, K., Kestens, L., Dilewijns, J. (1997) ISIJ Int., 37 (6), pp. 615-22.

    Article  Google Scholar 

  18. H. Saitoh, N. Yoshinaga, K. Ushioda, and O. Akisue: Collected Abstract of the 1991 Meeting of JIM, 1991, p. 97.

  19. Swartz, J.G. (1969) Acta Metall., 17 (12), pp. 1511-15.

    Article  Google Scholar 

  20. Saitoh, H., Ushioda, K. (1993) Mater. Trans. JIM 34 (1), pp. 13-19.

    Article  Google Scholar 

  21. M. Weller, M. Feuerbacher, J. Diehl, and K. Urban: J. Phys. Paris, IV, 1996, vol. 6, pp. C8-239–C8-242.

  22. De, A.K., Vandeputte, S., De Cooman, B.C. (2001) Scripta Materialia, 44 (4), pp. 695-701.

    Article  Google Scholar 

  23. Leslie, W.C. (1961) Acta Metall., 9 (11), pp. 1004-22.

    Article  Google Scholar 

  24. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62 (1), art. no. 308, pp. 49–62.

  25. Mecking, H., Kocks, U.F. (1981) Acta Metall., 29 (11), pp. 1865-75.

    Article  Google Scholar 

  26. Estrin, Y., Kubin, L.P. (1986) Acta Metall., 34 (12), pp. 2455-64.

    Article  Google Scholar 

  27. V. Hivert, P. Groh, P. Moser, and W. Frank: Phys. Status Solidi (A) Appl. Res., 1977, vol. 42 (2), pp. 511–18.

  28. Pal-val, P.P., Natsik, V.D., Kadeckova, S. (1988) Phys Status Solidi A 105: K37-K40.

    Article  Google Scholar 

  29. H. Mizubayashi, H. Kronmüller, and A. Seeger: Le J. Phys. Colloques, 1985, vol. 46 (C10), pp. 309–12.

  30. Shimada, M., Sakamoto, K. (1979) Scripta Metall., 13 (12), pp. 1177-82.

    Article  Google Scholar 

  31. L. Magalas and S. Gorczyca: Le J. Phys. Colloques, 1985, vol. 46 (C10), pp. 253–56.

  32. Magalas, L. and K. Ngai (1997). ASTM Spec. Tech. Publ. 1304, pp.189–203.

    Google Scholar 

  33. Koster, W., Bangert, L., Hahn, R. (1954) Arch. Eisenhutt 25 pp. 569-78.

    Google Scholar 

  34. Mura, T., Tamura, I., Brittain, J. O. (1961) J. Appl. Phys. 32(1) pp. 92-96.

    Article  Google Scholar 

  35. Chambers, R., Schultz, J., (1961) Phys. Rev. Lett. 6(6), pp. 273-75.

    Article  Google Scholar 

  36. McGrath, J., Rawlings R.,(1966) Acta Metall. 14(1), pp.1-4.

    Article  Google Scholar 

  37. Surin, A.I., Blanter, M.S. (1970) Fiz Metall. Metall. 29(1), pp.199-201.

    Google Scholar 

  38. A. Seeger and C. Wutrich: iL Nuovo Cimento, 1976, vol. 33B, pp. 38–74.

  39. A. Seeger: J. Phys., 1981, vol. 42 (C5), pp. C5–C201.

  40. Chen, L.-Q., Wang, C.-Y., Yu, T. (2008) Chin. Phys. B, 17 (2), pp. 662-68.

    Article  Google Scholar 

  41. T.D. Swinburne, S.L. Dudarev, S.P. Fitzgerald, M.R. Gilbert, and A.P. Sutton: Phys. Rev. B Condens. Matter Mater. Phys., 2013, vol. 87 (6), art. no. 064108.

  42. L. Ventelon, F. Willaime, and P. Leyronnas: J. Nucl. Mater., 2009, vol. 386–388 (C), pp. 26–29.

  43. Itakura, M., Kaburaki, H., Yamaguchi, M. (2012) Acta Mater., 60 (9), pp. 3698-710.

    Article  Google Scholar 

  44. L. Proville, L. Ventelon, and D. Rodney: Phys. Rev. B Condens. Matter Mater. Phys., 2013, vol. 87 (14), art. no. 144106.

  45. Wen, M., Fukuyama, S., Yokogawa, K. (2003) Acta Mater., 51 (6), pp. 1767-73.

    Article  Google Scholar 

  46. Spitzig, W.A., Keh, A.S. (1970) Acta Metall., 18 (9), pp. 1021-33.

    Article  Google Scholar 

  47. Sato, A., Meshii, M. (1973) Acta Metall., 21 (6), pp. 753-68.

    Article  Google Scholar 

  48. Schoek, G. (1965) Phys. Rev., 102, pp. 1458–59.

    Article  Google Scholar 

  49. A. Seeger, M. Weller, J. Diehl, Z.I. Pan, J.X. Zhang, and T.S. Ke: Z. Metall., 1982, vol. 73, p. 1–20.

  50. Schoeck, G. (1963), Acta Metall., Vol.11, pp. 617–22.

    Article  Google Scholar 

  51. Seeger, A. (1979), Phys. Status Solidi (A), Vol.55, pp.457–68.

    Article  Google Scholar 

  52. Schoek, G. (1982), Scripta Metall., vol. 10, pp. 233–39.

    Article  Google Scholar 

  53. Seeger, A. (1982), Scripta Metall., Vol. 10, pp. 241–47.

    Article  Google Scholar 

  54. K.L. Ngai, Y.-N. Wang, and L.B. Magalas: J. Alloys Compd., 1994, vols. 211–212 (C), pp. 327–32.

  55. Jung, I., De Cooman, B.C. (2012) Diffus. Defect Data B Solid State Phenom., 184, pp. 209-14.

    Article  Google Scholar 

  56. G. Gremaud: Mechanical Spectroscopy Q-1 2001, R. Schaller, G. Fantozzi, and G. Gremaud, eds., Trans Tech Publications, Uetikon-Zuerich, 2001, pp. 178–247.

  57. R.G.A. Veiga, M. Perez, C.S. Becquart, and C. Domain: J. Phys. Condens. Matter, 2013, vol. 25 (2), art. no. 025401.

  58. Wilde, J., Cerezo, A., Smith, G.D.W. (2000) Scripta Mater., 43 (1), pp. 39-48.

    Article  Google Scholar 

  59. Clouet, E., Garruchet, S., Nguyen, H., Perez, M., Becquart, C.S. (2008) Acta Materialia, 56 (14), pp. 3450-60.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the support of the POSCO Technical Research Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno C. De Cooman.

Additional information

Manuscript submitted June 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, IC., Kang, DG. & De Cooman, B.C. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel. Metall Mater Trans A 45, 1962–1978 (2014). https://doi.org/10.1007/s11661-013-2122-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2122-z

Keywords

Navigation