Skip to main content
Log in

Effect of Boron on the Hot Ductility Behavior of a Low Carbon Advanced Ultra-High Strength Steel (A-UHSS)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This research work studied the effect of boron additions (14, 33, 82, 126, and 214 ppm) on the hot ductility behavior of a low carbon advanced ultra-high strength steel. For this purpose, specimens were subjected to a hot tensile test at different temperatures [923 K, 973 K, 1023 K, 1073 K, 1173 K, and 1273 K (650 °C, 700 °C, 750 °C, 800 °C, 900 °C, and 1000 °C)] under a constant true strain rate of 10−3 s−1. The reduction of area (RA) of the tested samples until fracture was taken as a measure of the hot ductility. In general, results revealed a marked improvement in hot ductility from 82 ppm B when the stoichiometric composition for BN (0.8:1) was exceeded. By comparing the ductility curve of the steel with the highest boron content (B5, 214 ppm B) and the curve for the steel without boron (B0), the increase of hot ductility in terms of RA is over 100 pct. In contrast, the typical recovery of hot ductility at temperatures below the Ar3, where large amounts of normal transformation ferrite usually form in the structure, was not observed in these steels. On the other hand, the fracture surfaces indicated that the fracture mode tends to be more ductile as the boron content increases. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism, which in turn causes hot ductility loss. In general, results are discussed in terms of boron segregation and precipitation on austenitic grain boundaries during cooling from the austenitic range and subsequent plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Committee on Automotive Applications, International Iron & Steel Institute, Advanced High Strength Steel Application Guidelines, 2009, pp. 1–13.

    Google Scholar 

  2. R.D.K. Misra, G.C. Weatherly, J.E. Hartmann, and A.J. Boucek: Mater. Sci. Technol., 2001, vol. 17, pp. 1119-29.

    Article  CAS  Google Scholar 

  3. K.A. Taylor, and S.S. Hansen: Metall. Trans. A, 1991, vol. 21A, pp. 1697–08.

    Google Scholar 

  4. G.J. Sojka, M.R. Krishnadev, and S.K. Banerji: in Metall. Soc. AIME, K.S. Banerji and J.E. Morral, eds., Milwaukee, 1980, pp. 165–80.

  5. H. Tameiro, M. Murata, R. Habu, and M. Nagumo: Trans. ISIJ Int., 1987, vol. 27, pp. 120–29.

    Article  Google Scholar 

  6. J.E. Morral and J.B. Cameron: in Proc. Metall. Soc. AIME, S.K. Banerji and J.E. Morral, eds., Milwaukee, WI, 1980, pp. 19–32.

  7. R. Habu, M. Miyata, S. Sekino, and S. Goda: Trans. ISIJ Int., 1978, vol. 18, p. 492.

    CAS  Google Scholar 

  8. K.C. Cho, D.J. Mun, J.Y. Kim, J.K. Park, J.S. Lee, and Y.M. Koo: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1421-28.

    Article  CAS  Google Scholar 

  9. O. Comineli, R. Abushosha, and B. Mintz: Mater Sci. Technol., 1999, vol. 15, pp. 1058-68.

    Article  CAS  Google Scholar 

  10. B. Mintz, Z. Mohamed, and R. Abushosha: Mater Sci. Technol., 1989, vol. 5, pp. 682-88.

    CAS  Google Scholar 

  11. K. Suzuki, S. Miyagawa, Y. Saito, and K. Shiotani: ISIJ Int., 1995, vol. 35, pp. 34-41.

    Article  CAS  Google Scholar 

  12. S.K. Kim, J.S. Kim, and N.J. Kim: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 701–04.

    Article  Google Scholar 

  13. B. Mintz, and D.N. Crowther: Int. Mater. Rev., 2010, vol. 55, pp. 168–96.

    Article  CAS  Google Scholar 

  14. N.E. Hannerz: Trans. ISIJ Int., 1985, vol. 25, pp. 149–58.

    Article  CAS  Google Scholar 

  15. L.H. Chown, and L.A. Cornish: Mater. Sci. Eng. A, 2008, vol. 494, pp. 263–75.

    Article  Google Scholar 

  16. E. Lopéz-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, and J.M. Cabrera: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 464–70.

    Google Scholar 

  17. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4468–74.

    Article  Google Scholar 

  18. G.A.Toledo, O. Campo, and E. Lainez: Steel Res. 1993, vol. 64, 293-99.

    Google Scholar 

  19. B. Mintz, R. Abushosha, and J. J. Jonas: ISIJ Int., 1992, vol. 32, 241-49.

    Article  Google Scholar 

  20. P.J. Wray: Metall. Trans. A, 1984, vol. 15, 2009-19.

    CAS  Google Scholar 

  21. P.J. Wray: Metall. Trans. A, 1982, vol. 13, 125-34.

    CAS  Google Scholar 

  22. Z. Xu, G.R. Zhang, and T. Sakai: ISIJ Int., 1995, vol. 35, 210-16.

    Article  CAS  Google Scholar 

  23. C.M. Sellars, and W.J. McG Tegart: Mem. Sci. Rev. Met., 1966, vol. 63, 731-46.

    CAS  Google Scholar 

  24. E. López Chipres, I. Mejía, C. Maldonado, A. Bedolla Jacuinde, M. El-Wahabi, and J. M. Cabrera: Mater. Sci. Eng. A, 2008, vol. 480, pp. 49-55.

    Article  Google Scholar 

  25. I. Mejía, E. López Chipres, C. Maldonado, A. Bedolla Jacuinde, and J. M. Cabrera. Int. J. Mat. Res., vol. 99, 2008, pp. 1336-45.

    Article  Google Scholar 

  26. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4133-40.

    Article  Google Scholar 

  27. B. Mintz, S. Yue, and J.J. Jonas: Int. Mater. Rev., 1991, vol. 36, pp. 187-217.

    CAS  Google Scholar 

  28. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833–55.

    Article  CAS  Google Scholar 

  29. S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu, and T.D. Xu: Mater. Sci. Eng. A, 2003, vol. 360, pp. 96-100.

    Article  Google Scholar 

  30. B. Mintz, and R. Abushosha: Mater. Sci. Technol., 1992, vol. 8, pp. 171–78.

    CAS  Google Scholar 

  31. H. Matsuoka, K. Osawa, M. Ono, and M. Ohmura: ISIJ Int., 1997, vol. 37, pp. 255-62.

    Article  CAS  Google Scholar 

  32. C. Nahasaki, and J. Kihara: ISIJ Int., 1997, vol. 37, pp. 523-53.

    Article  Google Scholar 

  33. D.A. Melford: in Residuals Additives and Materials Properties, A. Kelly, D.W. Pashhley, E.D. Hondros, and C. Lea, The Royal Society, London, 1980, pp. 89–103.

  34. B. Mintz, R. Abushosha, and D.N. Crowther, Mat. Sci. Techn., 1995, vol. 11, pp. 474-81.

    Article  CAS  Google Scholar 

  35. M.K. Miller, P.J. Pareige, and K.F. Russell: Seeing and Catching Atoms, An Oak Ridge National Laboratory Report, TN, 2001.

  36. K. Laha, J. Kyono, S. Kishimoto, and N. Shinya: Scripta Mater., 2005, vol. 52, pp. 675–78.

    Article  CAS  Google Scholar 

  37. A.K. Ghosh, D.H. Bae, and S.L. Semiatin: in D.U. Furrer and S.L. Semiatin, eds., Fundamental of Modeling for Metals Processing, ASM Metals Handbook, vol. 22A, ASM International, Materials Park, OH, 2009, pp. 339–44.

  38. C. Marique, and P. Messien: Rev. Metall., 1990, vol. 87, pp. 599–609.

    CAS  Google Scholar 

  39. F. Zarandi, and S. Yue: ISIJ Int., 2006, vol. 46, pp. 591-98.

    Article  CAS  Google Scholar 

  40. F.G.Wilson, and T.Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221-86.

    Article  CAS  Google Scholar 

  41. F. Boratto, C. Weidig, P. Rodrigues, and B.M. Gonzalez: Wire J. Int., 1993, vol. 26, pp. 86-89.

    Google Scholar 

  42. J. Calvo, J.M. Cabrera, A. Rezaeian, and S. Yue: ISIJ Int., 2007, vol. 47, pp. 1518-26.

    Article  CAS  Google Scholar 

  43. M.P. Seah: Acta Metall., 1980, vol. 28, pp. 955-62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I. Mejía and G. Altamirano would like to thank CONACYT (México) for the support during this project. All the authors also acknowledge the Departament de Ciència dels Materials i Enginyeria Metal lúrgica of the Universitat Politécnica de Catalunya (UPC-Spain) for the support and technical assistance in this research work, especially Dr. Ahmed Boulaajaj. Funding was obtained through Project CICYT-MAT2008-06793-C02-01 (Spain) and Coordinación de la Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH-México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Mejía.

Additional information

Manuscript submitted April 2, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mejía, I., Altamirano, G., Bedolla-Jacuinde, A. et al. Effect of Boron on the Hot Ductility Behavior of a Low Carbon Advanced Ultra-High Strength Steel (A-UHSS). Metall Mater Trans A 44, 5165–5176 (2013). https://doi.org/10.1007/s11661-013-1870-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1870-0

Keywords

Navigation