Skip to main content
Log in

Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alloys in the Mo-rich corner of the Mo-Ti-Zr-C system have found broad applications in non-oxidizing environments requiring structural integrity well beyond 1273 K (1000 °C). Alloys such as TZM (Mo-0.5Ti-0.08Zr-0.03C by weight %) and TZC (Mo-1.2Ti-0.3Zr-0.1C by weight) owe much of their high temperature strength and microstructural stability to MC and M2C carbide phases. In turn, the stability of the respective carbides and the subsequent mechanical behavior of the alloys are strongly dependent on the alloying additions and thermal history. A CALPHAD-based thermodynamic modeling approach is employed to develop a quaternary thermodynamic database for the Mo-Ti-Zr-C system. The thermodynamic database thus developed is validated with diffusion multiple experiments and the validated database is exercised to elucidate the effects of alloying and thermal history on the phase equilibrium in Mo-rich alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Shields: Adv Mater Process, 1992, vol. 142 (2), p. 28.

    CAS  Google Scholar 

  2. A. M. Zakharov, I. I. Novikov, V. G. Parshikov and V. K. Portnoi: Metallovedenie i Termicheskaya Obrabokta Metallov, 1971, vol. 6, pp. 48-50.

    Google Scholar 

  3. D. Prokoshkin and M. Zakharova: Neorganicheskie Materialy, 1967, vol. 3 (1), pp. 87–93.

  4. A. M. Zakharov and E. M. Savitskii, Neorganicheskie Materialy, 1967, vol. 3, no. 4, pp. 661-7.

    Google Scholar 

  5. A. M. Zakharov and E. M. Savitskii: Russ. Metall., 1968, vol. 1, pp. 100-2.

    Google Scholar 

  6. J. -H. Shim, C. S. Oh and D. N. Lee: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 955-66.

    Article  CAS  Google Scholar 

  7. J.R. Davis, ed.: Metals Handbook Desk Edition, ASM, 1998.

  8. H.L. Lukas, S.G. Fries, and B. Sundman: Computational Thermodynamics—The CALPHAD Method, Cambridge, 2007, pp. 79–160.

  9. M. Hillert: J. Alloy Compd., 2001, vol. 320, no. 2, pp. 161 - 76.

    Article  CAS  Google Scholar 

  10. P. Duwez: Trans AIME, 1951, pp. 765-71.

  11. M. Hansen, E. L. Kamen and H. D. Kessler: Trans AIME, 1951, vol. 191, pp. 881-8.

    Google Scholar 

  12. G. N. Ronami, S. M. Kuznetsova, S. G. Fedotov, and K. M. Konstantinov: Vest. Mosk. Univ. Fiz., vol. 25, no. 2, pp. 186-189, 1970.

    Google Scholar 

  13. G. N. Ronami: Kristall und Technik, 1972, vol. 7, no. 6, pp. 615-638.

    Article  CAS  Google Scholar 

  14. E. Rudy, S. Windisch, A. J. Stosick and J. R. Hoffman: Trans. AIME, 1967, vol. 239, pp. 1247.

    CAS  Google Scholar 

  15. S. Terauchi, H. Matsumoto, T. Sugimoto, and K. Kamei: Technol. Rep. Kansai Univ.,, 1978, vol. 19, pp. 61-71.

    CAS  Google Scholar 

  16. N. Saunders: in Cost 507 Thermochemical Database for Light Metal Alloys, I. D. A. R. M. Ansara, ed., Luxembourg, European Communities, 1998, pp. 249–252.

    Google Scholar 

  17. A. M. Zakharov, B. G. Parschikov and Y. A. Belykh: Tsvetn. Metall., 1970, vol. 5, pp. 126-128.

    Google Scholar 

  18. M. Zinkevich and N. Mattern: J. Phase Equilib, 2002, vol. 23, no. 2, pp. 156-62.

    Article  CAS  Google Scholar 

  19. R. J. Perez and B. Sundman: CALPHAD, 2003, vol. 27, pp. 253-262.

    Article  Google Scholar 

  20. T. Massalski, ed.: ASM Binary Alloy Phase Diagrams, 2nd ed., Materials Park, OH, ASM International, 1990.

  21. J. O. Andersson, CALPHAD, vol. 12, pp. 1-8, 1988.

    Article  CAS  Google Scholar 

  22. H. Okamoto: J. Phase Equilib, 1998, vol. 17(1), pp. 89.

  23. S. Jonsson: Ph.D. Thesis, Royal Institute of Technology, Stockholm, 1993.

  24. L. Dumitrescu, M. Hillert and B. Sundman: Z. Metallkunde, 1999, vol. 90, pp. 534.

    CAS  Google Scholar 

  25. W. G. Moffatt: Binary Phase Diagrams Handbook, General Electric Comp., Schenectady, 1988.

  26. A. Guillermet: J. Alloys Comp., 1995, vol. 217, pp. 69-89.

    Article  Google Scholar 

  27. K. Kumar, P. Wollants and L. Delaey: J. Alloys Compds., 1994, vol. 206, pp. 121.

    Article  CAS  Google Scholar 

  28. H. -J. Chung, J. -H. Shim and D. N. Lee: J. Alloys and Compds, 1999, vol. 282, pp. 142-48.

    Article  CAS  Google Scholar 

  29. T. C. Wallace, C. P. Gutierrez and P. L. Stone: J. Phys. Chem., 1963, vol. 67, pp. 769-801.

    Article  CAS  Google Scholar 

  30. J. Bratberg, H. Mao, L. Kjellqvist, and A. Engström: Proceedings of the 12th International Symposium on Superalloys, Seven Springs, Pennsylvania, USA, 2012.

    Google Scholar 

  31. Y.V.Voroshilov, L.V. Gorshkova, A.M. Popova, and T.F. Fedorov: Poroshkovaya Metallurgiya 1967, vol. 53 (5), pp. 81–84.

  32. H. Nowotny and R. Kieffer: Z. Metallkd., 1947, vol. 38, pp. 257.

    Google Scholar 

  33. J. T. Norton and A. L. Mowry, J. Met., 1949, vol. 1, pp. 133.

    CAS  Google Scholar 

  34. H. Holleck: Metall. (Berlin), 1981, vol. 35, no. 10, pp. 999.

  35. D. Bandyopadhyay, R.C. Sharma, and N. Chakraborti: J. Phase Equilib, 2001, vol. 22 (1), pp. 61–64.

  36. A.T. Dinsdale: CALPHAD, 1991, vol. 15, no. 4, pp. 317–25.

  37. J. Wadsworth: Metall. Trans. A, 1983, vol. 14A, pp. 285.

    Google Scholar 

  38. J. C. Zhao, X. Zheng and D. G. Cahill, “High Throughout Diffusion Multiples,” Materials Today, vol. 8, no. 10, pp. 28-37, 2005.

    Article  CAS  Google Scholar 

  39. C.J. Rosa: Metall. Trans. A, 1983, vol. 14A, pp. 199–202.

  40. A. Laik, G.B. Kale and K. Bhanumurthy, Metall. Mater. Trans. A, vol. 37A, pp. 2919–26, 2006.

  41. R. C. Thomson: Mater Charact, 2000, vol. 44, pp. 219 - 33.

    Article  CAS  Google Scholar 

  42. M. Semchyshen, in The Metal Molybdenum, (ASM, Cleveland, OH), 1958, pp. 281-329.

    Google Scholar 

  43. J.C. Wang, M. Osawa, T. Yokokawa, H. Harada, M. Enomoto: Comp. Mater. Sci., 2007, vol. 39, pp. 871 - 79.

    Article  CAS  Google Scholar 

  44. T. Kitashima, H. Harada: Acta Mater, 2009, vol. 57, pp. 2020-28.

    Article  CAS  Google Scholar 

  45. J. Kundin, L. Mushongera, T. Goehler, H. Emmerich: Acta Mater, 2012, vol. 19, pp. 3758-72.

    Article  Google Scholar 

  46. M. Militzer: Curr Opin Solid St M, 2011, vol. 15, pp. 106-15.

    Article  CAS  Google Scholar 

  47. M.G. Mecozzi, J. Sietsma, S. van der Zwaag: Acta Mater., 2006, vol. 54, 1431–40.

  48. H. Kumar Yeddu, A. Malik, J. Ågren, G. Amberg, and A. Borgenstam: Acta Mater. 2012, vol. 60, pp. 1538–47.

  49. S. Amancherla, S. Kar, B. Bewlay, Y. Tang, and A. Chang: J. Phase Equilib. Diff., 2007, vol. 28, pp. 2–8.

  50. B. Tang, Y.-W. Cui, H. Kou, H. Chang, J. Li, and L. Zhou: Comput. Mater. Sci., 2012, vol. 61, pp. 76–82.

  51. V.S. Dheeradhada, D.M. Lipkin, D.A. Wark, S.K. Kar, and T.C. Tiearney: PMP III International Conference on Processing Materials for Properties Proceeding, PMP III Meeting, 2008.

Download references

Acknowledgments

The authors are grateful to a number of individuals whose guidance contributed to this work. Dr. Peter Meschter (now retired from GE Research) provided helpful guidance in the critical assessment of the ternary datasets. Professor Hari Kumar of IIT Chennai made valuable inputs to the assessment of the Mo-Ti-Zr ternary system. Drs. Kirk Rogers, Tom Tiearney, and Greg Steinlage of GE Healthcare provided much of the motivation for better understanding the phase composition of the production of molybdenum alloys. Professor Tresa Pollock of UC Santa Barbara and Dr. Shuwei Ma (formerly of the University of Michigan) provided invaluable assistance in the detailed TEM characterization of a range of molybdenum alloys including that reproduced in Figure 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Kar.

Additional information

Manuscript submitted October 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S.K., Dheeradhada, V.S. & Lipkin, D.M. Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation. Metall Mater Trans A 44, 3999–4010 (2013). https://doi.org/10.1007/s11661-013-1705-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1705-z

Keywords

Navigation