Skip to main content
Log in

Experimental and Thermokinetic Simulation Studies on the Formation of Deleterious Zones in Dissimilar Ferritic Steel Weldments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The methods to predict and prevent the formation of hard and soft zones in dissimilar weldments of 9Cr-1Mo and 2¼Cr-1Mo ferritic steels during high-temperature exposure are examined in this article. The computational studies have been carried out using multicomponent diffusion model incorporated in Dictra and validated by experimental methods using EPMA and TEM. Carbon concentration profiles across the interface of the weld joint between the two ferritic steels were simulated in the temperatures ranging from 823 K to 1023 K (from 550 °C to 750 °C) for various time durations using “diffusion in dispersed phase model” in Dictra. When precipitation and diffusion were incorporated into the calculations simultaneously, the agreement was better between the calculated and the experimentally measured values of carbon concentration profiles, type, and volume fractions of carbides in the hard zone and diffusion zone, width, and the activation energy. Calculation results of thermodynamic potentials of carbon in 2¼Cr-1Mo and 9Cr-1Mo steels suggested that the diffusion is driven by the activity gradient of carbon across the joint. The effectiveness of nickel-based diffusion barrier in suppressing the formation of hard and soft zones is demonstrated using calculations based on the cell model incorporated in Dictra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Laha, K.S. Chandravathi, K. Bhanu Sankara Rao, S.L. Mannan and D.H. Sastry: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 115-24.

    Article  CAS  Google Scholar 

  2. H. Cerjak, P. Hofer and B. Schaffernak: ISIJ International, 1999, vol. 39(9), pp. 874-88.

    Article  CAS  Google Scholar 

  3. B.C. Kim, H.S. Ann, and J.T. Song: in Proceedings of International Trends in Welding Science and Technology, ASM International, Materials Park, OH, 1992, pp. 307–15.

  4. L. Beres, A. Balogh, W. Irmer and C.S. Kirk: Welding J., 2003, vol. 82, pp. 330-36.

    Google Scholar 

  5. S.K. Albert, T.P.S. Gill, A.K. Tyagi, S.L. Mannan, S.D. Kulkarni and P. Rodriguez: Welding J., 1997, vol. 76, pp. 135-42.

    Google Scholar 

  6. R. Foret, B. Zlamal and J. Sopousek: Welding J., 2006, vol. 85, pp. 211-17.

    Google Scholar 

  7. J. Soupousek and R. Foret: Sci. Technol. Weld Join., 2008, vol. 13(1), pp. 17-24.

    Article  Google Scholar 

  8. C. Sudha, A.L.E. Terrance, S.K. Albert and M. Vijayalakshmi: J. Nucl. Mater., 2002, vol. 302, pp. 193-205.

    Article  CAS  Google Scholar 

  9. C.D. Lundin, K.K. Khan and D. Yang: WRC Bull., 1996, vol. 407, pp. 1-49.

    Google Scholar 

  10. C. Sudha, V. Thomas Paul, A.L.E. Terrrance, S. Saroja and M. Vijayalakshmi: Welding J., 2006, vol. 85, pp. 71-80.

    Google Scholar 

  11. R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja and M. Vijayalakshmi: J. Mater. Sci., 2009, vol. 44, pp. 257-65.

    Article  CAS  Google Scholar 

  12. E. Kozeschnik, P. Polt, S. Brett and B. Buchmayr: Sci. Technol. Weld. Join., 2002, vol.7(2), pp. 63-68.

    Article  CAS  Google Scholar 

  13. E. Kozeschnik, P. Warbichler, I. Letofsky-Papst, S. Brett and B. Buchmayr: Sci. Technol. Weld. Join., 2002, vol. 7, pp. 69-76.

    Article  CAS  Google Scholar 

  14. E. Kozeschnik and B. Buchmayr: Mathematical Modeling of Weld Phenomena 5, Materials Modeling Series, IOM Communication Ltd, London, 2001, pp. 349-61.

    Google Scholar 

  15. E. Kozeschnik, P. PÖlt, P. Warbichler, I. Letofshy-Papst, S. Brett and B. Buchmayr: Mathematical Modeling of Weld Phenomena 6, Materials Modeling Series, Maney Publishing, London, 2002, pp. 323-36.

    Google Scholar 

  16. B. Buchmayr: Mathematical Modeling of Weld Phenomena, The Institute of Materials, London, 1993, pp. 227-40.

    Google Scholar 

  17. T. Helander, H.C.M. Andersson and M. Oskarsson: Mater. High Temp., 2000, vol. 17, pp. 389-96.

    Article  CAS  Google Scholar 

  18. A. EngstrÖm, L. HÖglund and J. Ǻgren: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1127-34.

    Article  Google Scholar 

  19. B. Buchmayr and J. S. Kirkaldy: Fundamentals and Applications of Ternary Diffusion, Pergamon Press, New York, 1990, pp. 164-72.

    Google Scholar 

  20. J.O. Anderson, L. Hoglund, B. Jonsson, and J. Agren: Fundamentals and Applications of Ternary Diffusion, Pergamon Press, New York, 1990, pp. 153–62.

  21. A. Borgenstam, A. EngstrÖm, L. Höglund and J. Ǻgren: J. Phase Equilibria., 2000, vol. 21, pp. 269-80.

    Article  CAS  Google Scholar 

  22. J.O. Anderson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  23. J. Kucera, J. Vrestal and K Stránský: Defect Diffus. Forum, 1989, vol. 66-69, pp. 1389–94.

    Google Scholar 

  24. F. Gauzzi and S. Missori, J. Mater. Sci., 1988, vol. 23, pp. 782-89.

    Article  CAS  Google Scholar 

  25. B.J. Lee: CALPHAD, 1993, vol. 17, pp. 251-68.

    Article  CAS  Google Scholar 

  26. B.J. Lee: CALPHAD, 1992, vol. 16, pp. 121-49.

    Article  CAS  Google Scholar 

  27. J.O. Andersson and N. Lange: Metall. Trans. A, 1988, vol. 19A, pp. 1385-94.

    CAS  Google Scholar 

  28. J.O. Andersson: CALPHAD, 1988, vol. 12, pp. 9-23.

    Article  CAS  Google Scholar 

  29. M. Hillert and C. Qiu: J. Phase Equilib. Diffus., 1992, vol. 13(5), pp. 512-21.

    Article  CAS  Google Scholar 

  30. A. Gabriel, P. Gustafson and I. Ansara: CALPHAD, 1987, vol. 11, pp. 203-18.

    Article  CAS  Google Scholar 

  31. K. Frisk: Metall. Trans. A, 1992, vol. 23A, pp. 639-49.

    CAS  Google Scholar 

  32. M. Hillert and C. Qiu: Metall. Trans. A, 1992, vol. 23A, pp. 1593-96.

    CAS  Google Scholar 

  33. K. Laha, K. Bhanu Sankara Rao and S.L. Mannan: Mater. Sci. Eng., 1990, vol. A129, pp. 183-95.

    CAS  Google Scholar 

  34. M. Vijayalakshmi, S. Saroja, V. Thomas Paul, R. Mythili and V.S. Raghunathan: Metall. Mater. Trans. A, 1999, vol. 31A, pp. 161-74.

    Article  Google Scholar 

  35. C. Sudha, R. Anand, S. Saroja and M. Vijayalakshmi: Trans. IIM, 2010, vol. 63(4), pp. 739-44.

    CAS  Google Scholar 

  36. K. Takeda, K. Yamashita, Y. Murata, T. Koyama and M. Morinaga: Mater. Trans., 2008, vol. 49(3), pp. 479-83.

    Article  CAS  Google Scholar 

  37. L. Bornstein: Diffusion in Solids, Metals and Alloys, Springer, Germany, 1990.

    Google Scholar 

  38. P. Parameswaran, M. Vijayalakshmi, P. Shankar and V.S. Raghunathan: J. Mater. Sci., 1992, vol. 28(20), pp. 5426-34.

    Article  Google Scholar 

  39. B. Senior, F.W. Noble and B.L. Eyre: Acta Metall. Mater., 1988, vol. 36(7), pp. 1855-62.

    Article  CAS  Google Scholar 

  40. Y. Jin: Metall. Trans., 1989, vol. 20A, pp. 1561-63.

    Google Scholar 

  41. R. Anand, C. Sudha, T. Karthikeyan, A.L.E. Terrance, S. Saroja and M. Vijayalakshmi, Trans. IIM, 2008, vol. 61(6), pp. 483-86.

    CAS  Google Scholar 

  42. R. Anand, C. Sudha, V. Thomas Paul, S. Saroja and M. Vijayalakshmi: Welding J., 2010, vol. 89, pp. 65-74.

    Google Scholar 

Download references

Acknowledgments

The authors thank Shri. S.C. Chetal, Director, IGCAR, and Dr. T. Jayakumar, Director, Metallurgy and Materials Group, IGCAR for their support and encouragement during the course of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sudha.

Additional information

Manuscript submitted July 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, R., Sudha, C., Saroja, S. et al. Experimental and Thermokinetic Simulation Studies on the Formation of Deleterious Zones in Dissimilar Ferritic Steel Weldments. Metall Mater Trans A 44, 2156–2170 (2013). https://doi.org/10.1007/s11661-012-1591-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1591-9

Keywords

Navigation