Skip to main content
Log in

Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3T M (T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Odette, G.R., M.J. Alinger, and B.D. Wirth (2008) Annu. Rev. Mater. Res. 38, 471–503.

    Article  CAS  Google Scholar 

  2. Zinkle, S.J. and J.T. Busby, Mater. Today, 2009. 12(11): p. 12-19.

    Article  CAS  Google Scholar 

  3. Allen, T., et al., Mater. Today, 2010. 13(12): p. 14-23.

    Article  CAS  Google Scholar 

  4. Grimes, R.W., R.J.M. Konings, and L. Edwards, Nat. Mater., 2008. 7(9): p. 683-85.

    Article  CAS  Google Scholar 

  5. Allen, T.R., et al., JOM, 2008. 60(1): p. 15-23.

    Article  CAS  Google Scholar 

  6. G.D. Johnson, 1989. Trans. Am. Nucl. Soc., 60, 286–87.

    Google Scholar 

  7. Gelles, D.S., J. Nucl. Mater., 1996. 233: p. 293-98.

    Article  Google Scholar 

  8. Garner, F.A., M.B. Toloczko, and B.H. Sencer, J. Nucl. Mater. 2000. 276(1-3): p. 123-42.

    Article  CAS  Google Scholar 

  9. Little, E.A. and D.A. Stow, J. Nucl. Mater., 1979. 87(1): p. 25-39.

    Article  CAS  Google Scholar 

  10. Klueh, R.L. and A.T. Nelson, J. Nucl. Mater., 2007. 371(1-3): p. 37-52.

    Article  CAS  Google Scholar 

  11. D.S. Gelles and L.E. Thomas: in Proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, Metals Society of the American Institute of Mechanical Engineers, New York, 1983.

  12. R.L. Klueh D.R. Harries: High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, West Conshohocken, PA, 2001.

    Book  Google Scholar 

  13. Wilcox, R.C. and B.A. Chin, Metallography, 1984. 17(3): p. 285-98.

    Article  CAS  Google Scholar 

  14. Klueh, R.L. and D.J. Alexander, J. Nucl. Mater., 1998. 258–263, 1269–1274.

    Article  Google Scholar 

  15. Sencer, B.H., et al., J. Nucl. Mater., 2009. 393(2): p. 235-41.

    Article  CAS  Google Scholar 

  16. Kai, J.J. and R.L. Klueh, J. Nucl. Mater. 1996. 230(2): p. 116-23.

    Article  CAS  Google Scholar 

  17. Kurtz, R.J., et al. J. Nucl. Mater., 2009. 386–388: p. 411-17.

    Article  Google Scholar 

  18. Lucon, E., et al. Fusion Eng. Des., 2006. 81(8–14): p. 917-23.

    Article  CAS  Google Scholar 

  19. Maloy, S.A., et al. J. Nucl. Mater., 2011. 415(3): p. 302-05.

    Article  CAS  Google Scholar 

  20. Anderoglu, O., et al., 2012, J. Nucl. Mater., 430, 1–3.

    Article  Google Scholar 

  21. Farrell, K. and T.S. Byun, J. Nucl. Mater., 2003. 318(0): p. 274-82.

    Article  CAS  Google Scholar 

  22. Dubuisson, P., D. Gilbon, and J.L. Seran, J. Nucl. Mater., 1993. 205: p. 178-89.

    Article  CAS  Google Scholar 

  23. Jitsukawa, S., et al. J. Nucl. Mater., 2004, 329–333, 39–46.

    Article  Google Scholar 

  24. Jitsukawa, S., et al. Nucl. Fusion, 2009, 49(11), 115006.

    Article  Google Scholar 

  25. Lucon, E. and W. Vandermeulen, J. Nucl. Mater., 2009. 386-388: p. 254-56.

    Article  Google Scholar 

  26. Olander, D.R., Fundamental Aspects of Nuclear Reactor Fuel Elements. 1976. Springfield, VA: Technical Information Service.

    Book  Google Scholar 

  27. Was, G., Fundamentals of Radiation Materials Science: Metals and Alloys, 1st edn. 2007. Springer, New York

    Google Scholar 

  28. Maloy, S.A., et al. J. Nucl. Mater., 2006. 356(1–3): p. 62-69.

    Article  CAS  Google Scholar 

  29. Yamamoto, T., et al. J. Nucl. Mater., 2006. 356(1–3): p. 27-49.

    Article  CAS  Google Scholar 

  30. Alamo, A., et al., J. Nucl. Mater., 2000. 283–287, pp. 353-57.

    Article  Google Scholar 

  31. Jitsukawa, S., et al., J. Nucl. Mater., 2002. 307–311, 179–86.

    Article  Google Scholar 

  32. Saleh, T.A., T.J. Romero, and S.A. Maloy: In preparation.

  33. Shamardin, V.K., et al., J. Nucl. Mater., 2002. 307: p. 229-35.

    Article  Google Scholar 

  34. Rowcliffe, A.F., et al. J. Nucl. Mater., 1998, 258–263, pp. 1275-79.

    Article  Google Scholar 

  35. Klueh, R.L. and J.M. Vitek, J. Nucl. Mater., 1985. 137(1): p. 44-50.

    Article  CAS  Google Scholar 

  36. Klueh, R.L. and J.M. Vitek, J. Nucl. Mater., 1985. 132(1): p. 27-31.

    Article  CAS  Google Scholar 

  37. Klueh, R.L. and J.M. Vitek, J. Nucl. Mater., 1991. 182(0): p. 230-39.

    Article  CAS  Google Scholar 

  38. Alamo, A., et al., J. Nucl. Mater., 2007, 367, pp. 54-59.

    Article  Google Scholar 

  39. Almazouzi, A. and E. Lucon, TMS Lett., 2005, 2(3): p. 73-74.

    CAS  Google Scholar 

  40. Matijasevic, M., E. Lucon, and A. Almazouzi, J. Nucl. Mater., 2008. 377(1): p. 101-08.

    Article  CAS  Google Scholar 

  41. Klueh, R.L., J. Nucl. Mater., 1991, 179–181, 728-32.

    Article  Google Scholar 

  42. Makin, M.J. and F.J. Minter, Acta Metall., 1960. 8(10): p. 691-99.

    Article  CAS  Google Scholar 

  43. Makin, M.J. and F.J. Minter, J. Inst. Met., 1957. 85(9): p. 397-402.

    CAS  Google Scholar 

  44. Henry, J., X. Averty, and A. Alamo, J. Nucl. Mater. 2011, 417(1–3): p. 99-103.

    Article  CAS  Google Scholar 

  45. Gaganidze, E., et al., J. Nucl. Mater., 2011. 417(1–3): p. 93-98.

    Article  CAS  Google Scholar 

  46. T.A. Saleh, T.J. Romero, and S.A. Maloy: unpublished research.

  47. R.L. Klueh and D.J. Alexander: Effects of Radiation on Materials: 15th International Symposium, R. Stoller, A. Kumar, and D. Gelles, eds., ASTM, Philadelphia, 1992, vol. 1125, pp. 1256–66.

  48. Petersen, C., et al., J. Nucl. Mater., 2009. 386–388, p. 299-302.

    Article  Google Scholar 

  49. Schaublin, R., D. Gelles, and M. Victoria: J. Nucl. Mater., 2002, vols. 307–311, pp. 197–202.

  50. Sencer, B.H., et al., J. Nucl. Mater., 2011. 414(2): p. 237-42.

    Article  CAS  Google Scholar 

  51. Materna-Morris, E., et al., J. Nucl. Mater., 2009. 386–388: p. 422-25.

    Article  Google Scholar 

  52. Tanigawa, H., et al., J. Nucl. Mater., 2009. 386-388: p. 231-35.

    Article  Google Scholar 

  53. Was, G.S., et al., J. Nucl. Mater., 2011. 411(1–3): p. 41-50.

    Article  CAS  Google Scholar 

  54. Klueh, R.L., Elevated-Temperature Ferritic Martensitic Steels and Their Applications to Future Nuclear Reactors, 2004. Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  55. Klueh, R.L., K. Ehrlich, and F. Abe, J. Nucl. Mater., 1992. 191: p. 116-24.

    Google Scholar 

  56. Huang, F.H. and M.L. Hamilton, J. Nucl. Mater., 1992. 187(3): p. 278-93.

    Article  CAS  Google Scholar 

  57. Jia, X. and Y. Dai, J. Nucl. Mater., 2006. 356(1–3): p. 50-55.

    Article  CAS  Google Scholar 

  58. Huang, F.H., Eng. Fract. Mech., 1992. 43(5): p. 733–48.

    Article  Google Scholar 

  59. F.H. Huang: Fracture Toughness and Tensile Properties of Alloy HT9 in Thin Sections Under High Neutron Fluence, ASTM, Philadelphia, 1992.

  60. Maloy, S.A., et al., J. Nucl. Mater., 2001. 296(1–3): p. 119–28.

    Article  CAS  Google Scholar 

  61. Byun, T.S., et al., J. Nucl. Mater., 2010. 407(2): p. 78-82.

    Article  CAS  Google Scholar 

  62. Lucon, E., J. Nucl. Mater., 2007. 367: p. 575-80.

    Article  Google Scholar 

  63. Y. Nishiyama et al.: in Effects of Radiation on Materials: 15th International Symposium, R.E. Stoller, A.S. Kumar, and D.S. Gelles, eds., ASTM, Philadelphia, 1992, vol. 1125, pp. 1287–303.

  64. Schneider, H.C., J. Aktaa, and R. Rolli, J. Nucl. Mater., 2007. 367: p. 599-602.

    Article  Google Scholar 

  65. Chaouadi, R., et al., J. Nucl. Mater., 2010. 403(1–3): p. 15-18.

    Article  CAS  Google Scholar 

  66. Chaouadi, R., J. Nucl. Mater., 2007. 360(2): p. 75-91.

    Article  CAS  Google Scholar 

  67. Jung, P., J. Nucl. Mater., 2002. 301(1): p. 15-22.

    Article  CAS  Google Scholar 

  68. Tavassoli, A.A.F., J. Nucl. Mater., 2002. 302(2–3): p. 73-88.

    Article  CAS  Google Scholar 

  69. van der Schaaf, B., Fusion Eng. Des., 2000. 51-52: p. 43-54.

    Article  Google Scholar 

  70. Zinkle, S.J., Fusion Eng. Des., 2005. 74(1–4): p. 31-40.

    Article  CAS  Google Scholar 

  71. Zinkle, S.J. and N.M. Ghoniem, J. Nucl. Mater., 2011. 417(1–3): p. 2-8.

    Article  CAS  Google Scholar 

  72. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd ed., Wiley, New York, 1989.

  73. Byun, T.S., K. Farrell, and M. Li, Acta Mater., 2008. 56(5): p. 1044-55.

    Article  CAS  Google Scholar 

  74. T.S. Byun: Fracture Toughness and Charpy Impact Test Results for ACO-3 Duct Material, ORNL, Oak Ridge, 2010.

  75. ASTM, Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range. 2002.

  76. Byun, T.S., et al., J. Nucl. Mater., 2012. 421(1–3): p. 104-111.

    Article  CAS  Google Scholar 

  77. M.G. Horsten et al.: in Effects of Radiation on Materials: 19th International Symposium, M.L. Hamilton et al., eds., ASTM STP 1366, Philadelphia, 2000, pp. 579–93.

  78. Klueh, R.L. and D.J. Alexander, J. Nucl. Mater., 1992, 191, 896-900.

    Article  Google Scholar 

  79. Klueh, R.L., et al. (2006) J. Nucl. Mater., 357(1–3), 156–68.

    Article  CAS  Google Scholar 

  80. Klueh, R.L., M.A. Sokolov, and N. Hashimoto, J. Nucl. Mater., 2008. 374(1–2): p. 220-228.

    Article  CAS  Google Scholar 

  81. Lucas, G.E. and D.S. Gelles, J. Nucl. Mater., 1988, 155: p. 164-77.

    Article  Google Scholar 

  82. Klueh, R.L., et al., J. Nucl. Mater., 1988, 155, 973-77.

    Article  Google Scholar 

  83. W.L. Hu and D.S. Gelles: in Influence of Radiation on Mechanical Properties: 13th International Symposium (Part II), ASTM STP 956, Philadelphia, 1987, pp. 83–97.

  84. F.H. Huang and D.S. Gelles: Impact Fracture Behavior of HT9 Duct, Westinghouse Hanford Company, Richland, 1994.

  85. Lechtenberg, T., J. Nucl. Mater., 1985, 133, 149-55.

    Article  Google Scholar 

  86. R.L. Klueh, D.S. Gelles, and T.A. Lechtenberg: J. Nucl. Mater., 1986, vols. 141–143, pp. 1081–87.

  87. Hamilton, M.L., L.E. Schubert, and D.S. Gelles, J. Nucl. Mater., 1998. 258: p. 1222-27.

    Article  Google Scholar 

  88. Klueh, R.L., K. Shiba, and M.A. Sokolov, J. Nucl. Mater., 2008. 377(3): 427-37.

    Article  CAS  Google Scholar 

  89. R.L. Klueh and D.J. Alexander, 1992. J. Nucl. Mater. 187, 60.

    Article  CAS  Google Scholar 

  90. Boutard, J.-L., et al. C. R. Phys., 2008. 9(3–4): p. 287-302.

    Article  CAS  Google Scholar 

  91. J.L. Seran et al.: in Effects of Radiation on Materials: 15th International Symposium, R. Stoller, A.S. Kumar, and D. Gelles, eds., ASTM STP, Philadelphia, 1992, vol. 1125, 1209–33.

  92. Uehira, A. and S. Ukai, J. Nucl. Sci. Technol., 2004. 41(10): p. 973-80.

    Article  CAS  Google Scholar 

  93. Heald, P.T. and M.V. Speight, Philos. Mag., 1974. 29(5): p. 1075-80.

    Article  CAS  Google Scholar 

  94. Duffin, W.J. and F.A. Nichols, J. Nucl. Mater., 1973. 45(4): p. 302-16.

    Article  CAS  Google Scholar 

  95. Woo, C.H., J. Nucl. Mater., 1995. 225: p. 8-14.

    Article  CAS  Google Scholar 

  96. A.D. Brailsfo and R. Bullough, Philos. Mag., 1973, vol. 27(1), 49-64.

    Article  Google Scholar 

  97. Matthews, J.R. and M.W. Finnis, J. Nucl. Mater., 1988. 159: p. 257-85.

    Article  CAS  Google Scholar 

  98. W.G. Wolfer, M. Ashkin, and A. Boltax: Creep and Swelling Deformation in Structural Materials During Fast Neutron Irradiations, ASTM-STP 570, Philadelphia, 1976, vol. 570, pp. 233–52.

  99. B.A. Chin: in Topical Conference on Ferritic Alloys for the Use in Nuclear Energy Technologies, American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME), Snowbird, UT, 1983, p. 593.

  100. G.W. Lewthwaite and D. Mosedale: Dimensional Stability and Mechanical Behaviour of Irradiated Metals and Alloys, British Nuclear Energy Society, Brighton, 1983.

  101. Gilbert, E.R., J.L. Straalsund, and G.L. Wire, J. Nucl. Mater., 1977. 65(1): p. 266-78.

    Article  CAS  Google Scholar 

  102. Marshall, J., et al., J. Nucl. Mater., 1977. 65(1): p. 230-37.

    Article  Google Scholar 

  103. M.B. Toloczko and F.A. Garner: in Effects of Irradiation on Materials: 18th International Symposium, ASTM STP 1325, West Conshohocken, PA, 1999, pp. 765–79.

  104. M.B. Toloczko and F.A. Garner: in Effects of Radiation on Materials: 21st International Symposium, M.L. Grossbeck, et al., eds., ASTM STP 1447, Philadelphia, 2004, pp. 454–67.

  105. Grossbeck, M.L., L.T. Gibson, and S. Jitsukawa, J. Nucl. Mater., 1996, 233–237: p. 148-51.

    Article  Google Scholar 

  106. Uehira, A., et al., J. Nucl. Mater., 2000. 283: p. 396-99.

    Article  Google Scholar 

  107. M.B. Toloczko et al.: in Effects of Radiation on Materials: 20th International Symposium, S.T. Rosinski et al., eds., ASTM STP 1405, Philadelphia, 2001, pp. 557–67.

  108. Kohyama, A., et al. J. Nucl. Mater., 1994. 212: p. 751-54.

    Article  Google Scholar 

  109. Toloczko, M.B., et al., J. Nucl. Mater., 2004. 329: p. 352-55.

    Article  Google Scholar 

  110. G.W. Lewthwaite and K.J. Proctor, J. Nucl. Mater., 1973. 46(1): p. 9-22.

    Article  CAS  Google Scholar 

  111. Dai, Y., et al. J. Nucl. Mate, 2011. 415(3): p. 306-10.

    Article  CAS  Google Scholar 

  112. M.B. Toloczko, F.A. Garner, and C.R. Eiholzer: J. Nucl. Mater., 1994, vol. 212–215, pp. 604–07.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Anderoglu.

Additional information

Manuscript submitted April 27, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderoglu, O., Byun, T.S., Toloczko, M. et al. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors. Metall Mater Trans A 44 (Suppl 1), 70–83 (2013). https://doi.org/10.1007/s11661-012-1565-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1565-y

Keywords

Navigation