Skip to main content
Log in

Spark Plasma Sintering of Nanostructured Aluminum: Influence of Tooling Material on Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of tooling material, i.e., graphite and WC-Co, on the microstructure of a spark plasma sintering (SPS) consolidated, nanostructured aluminum alloy is studied in this paper. The results show that tooling selection influences microstructure evolution, independent of process parameters. The influence of tooling on microstructure is rationalized on the basis of the following factors: heating rate, electrical current density, localized heating, and imposed pressure. A theoretic framework, based on the physical properties of graphite and WC-Co, is formulated to explain the observed behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Lu: Int. Mater. Rev., 2008, vol. 53, pp. 21-38.

    Article  CAS  Google Scholar 

  2. Z. A. Munir, D. V. Quach and M. Ohyanagi: J. Am. Ceram. Soc., 2011, vol. 94, pp. 1-19.

    Article  CAS  Google Scholar 

  3. A. Zuniga, L. Ajdelsztajn and E. J. Lavernia: Metall. Mater. Trans.A, 2006, vol. 37A, pp. 1343-52.

    Article  CAS  Google Scholar 

  4. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-77.

    Article  CAS  Google Scholar 

  5. R. Chaim: Mater. Sci. Eng. A, 2007, vol. 443, pp. 25-32.

    Article  Google Scholar 

  6. D. H. Kim, C. Kim, S. H. Heo and H. Kim: Acta Mater., 2011, vol. 59, pp. 405-11.

    Article  CAS  Google Scholar 

  7. R. Kumar, K. H. Prakash, P. Cheang and K. A. Khor: Acta Mater., 2005, vol. 53, pp. 2327-35.

    Article  CAS  Google Scholar 

  8. M. Zadra, F. Casari, L. Girardini and A. Molinari: Powder Metall., 2007, vol. 50, pp. 40-45.

    Article  CAS  Google Scholar 

  9. J. G. Santanach, A. Weibel, C. Estournes, Q. Yang, C. Laurent and A. Peigney: Acta Mater., 2011, vol. 59, pp. 1400-08.

    Article  CAS  Google Scholar 

  10. W. Chen, U. Anselmi-Tamburini, J. E. Garay, J. R. Groza and Z. A. Munir: Mater. Sci. Eng. A, 2005, vol. 394, pp. 132-38.

    Article  Google Scholar 

  11. M. Kubota and B. P. Wynne: Scripta Mater., 2007, vol. 57, pp. 719-22.

    Article  CAS  Google Scholar 

  12. S. Grasso, Y. Sakka, G. Maizza and C. F. Hu: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2418-21.

    Article  CAS  Google Scholar 

  13. D. M. Liu, Y. H. Xiong, T. Topping, Y. Z. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J. M. Schoenung and E. J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 340-50.

    Article  Google Scholar 

  14. Y. H. Xiong, D. M. Liu, T. Topping, Y. Z. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J. M. Schoenung and E. J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43, pp. 327-39.

    Article  Google Scholar 

  15. C. L. Mantell (1968) Carbon and Graphite Handbook. Interscience Publishers, New York, pp. 232-323.

    Google Scholar 

  16. C. T. Lynch (1974) CRC Handbook of Materials Science. CRC Press, Boca Raton, pp. 513-532.

    Google Scholar 

  17. ASM: ASM Handbook (vol. 2)Properties and SelectionNonferrous Alloys and Special-Purpose Materials 2, ASM International, Materials Park, OH, p. 2760.

  18. N. V. Novikov, V. P. Bondarenko, V. T. Golovchan (2007) J. Superhard Mater. 29:261-80.

    Article  Google Scholar 

  19. T. H. Fang, W. L. Li, N. R. Tao and K. Lu: Science, 2011, vol. 331, pp. 1587-90.

    Article  CAS  Google Scholar 

  20. M. A. Meyers, A. Mishra and D. J. Benson: Progress in Materials Science, 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  21. V. Viswanathan, T. Laha, K. Balani, A. Agarwal and S. Seal: Mater. Sci. Eng. R, 2006, vol. 54, pp. 121-285.

    Article  Google Scholar 

  22. X. Y. Li, Y. J. Wei, L. Lu, K. Lu and H. J. Gao: Nature, 2010, vol. 464, pp. 877-80.

    Article  CAS  Google Scholar 

  23. D. B. Witkin and E. J. Lavernia: Progress in Materials Science, 2006, vol. 51, pp. 1-60.

    Article  CAS  Google Scholar 

  24. F. Zhou, X. Z. Liao, Y. T. Zhu, S. Dallek and E. J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777-91.

    Article  CAS  Google Scholar 

  25. J. R. Davis (1994) ASM Specialty HandbookAluminum and Aluminu Alloys. ASM International, OH, Materials Park, pp. 675-676.

    Google Scholar 

  26. J. M. Montes, F. G. Cuevas and J. Cintas: Appl. Phys.A, 2008, vol. 92, pp. 375-80.

    Article  CAS  Google Scholar 

  27. W. M. Haynes and D. R. Lide: CRC Handbook of Chemistry and Physics, p. 4-123, 12-42, CRC Press, New York, 2010.

    Google Scholar 

  28. A. S. Helle, K. E. Easterling and M. F. Ashby: Acta Metallurgica, 1985, vol. 33, pp. 2163-74.

    Article  CAS  Google Scholar 

  29. H. T. Orchard and A. L. Greer: Appl. Phys. Lett., 2005, vol. 86, pp. 1906-08.

    Article  Google Scholar 

  30. P. Asokakumar, K. Obrien, K. G. Lynn, P. J. Simpson and K. P. Rodbell: Appl. Phys. Lett., 1996, vol. 68, pp. 406-08.

    Article  CAS  Google Scholar 

  31. J. E. Garay, S. C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar and Z. A. Munir: Appl. Phys. Lett., 2004, vol. 85, pp. 573-75.

    Article  CAS  Google Scholar 

  32. J. M. Frei, U. Anselmi-Tamburini and Z. A. Munir: J. Appl. Phys., 2007, vol. 101, pp. 4914-21.

    Article  Google Scholar 

  33. X. Y. Song, X. M. Liu and J. X. Zhang: J. Am. Ceram. Soc., 2006, vol. 89, pp. 494-500.

    Article  CAS  Google Scholar 

  34. C. A. Volkert and C. Lingk: Appl. Phys. Lett., 1998, vol. 73, pp. 3677-79.

    Article  CAS  Google Scholar 

  35. S. Ni, Y. B. Wang, X. Z. Liao, S. N. Alhajeri, H. Q. Li, Y. H. Zhao, E. J. Lavernia, S. P. Ringer, T. G. Langdon and Y. T. Zhu: Scripta Mater., 2011, vol. 64, pp. 327-30.

    Article  CAS  Google Scholar 

  36. Y. B. Wang, J. C. Ho, X. Z. Liao, H. Q. Li, S. P. Ringer and Y. T. Zhu: Appl. Phys. Lett., 2009, vol. 94, pp. 011908.

    Article  Google Scholar 

  37. M. Jin, A. M. Minor, E. A. Stach and J. W. Morris: Acta Mater., 2004, vol. 52, pp. 5381-87.

    Article  CAS  Google Scholar 

  38. Electrodes Inc. Graphite supplier.

  39. C. J. Smithells (2004) Smithells Metals Reference Book. Elsevier Butterworth-Heinemann, Oxford, p 356

    Google Scholar 

  40. X. M. Liu, X. Y. Song, S. X. Zhao and J. X. Zhang: J. Am. Ceram. Soc., 2010, vol. 93, pp. 3153-58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is based upon work supported by the US Army TACOM-ARDEC under contract No. W05QKN-09-C-118 and the Office of Naval Research with grant No. N00014-07-1-0745. Part of D. Liu’s work is also supported by the Young Scientist Foundation of Shandong Province, China (No. BS2009CL043), and the innovation foundation of Shandong University (2012TS032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Lavernia.

Additional information

Manuscript submitted April 16, 2012.

Appendices

Appendix A

See Table AI.

Table AI Values of Physical Parameters at Room Temperature

Appendix B: Calculation of the Localized Pressure P c

Under the assumptions that the powder particles are solid spheres having uniform radius r p and they are closely packed in the mold, a section perpendicular to the axis of the mold and passing the center of a sphere is illustrated in Figure B1(a). To render the problem tractable, the section is divided into numerous repeated small rectangles and one sample is highlighted gray in Figure B1(a). The load exerted on the area of a small rectangle is actually supported by the area of the whole center circle and four circular quarters at the corners, or a total of two circles. Thus, one can get

Fig. B1
figure 10

(a) A schematic diagram showing a section perpendicular to the axis of the mold and passing the center of a sphere. (b) A solid sphere model showing the packing of the spheres. (c) A free-body diagram for the lower semisphere of an arbitrary sphere. (d) A schematic diagram used for the calculation of the P c

$$ P_{\text{D}} = 2\sqrt 3 r \cdot 2r \cdot P_{\text{a}} /2 $$
(B1)

where P D is the force exerted on the area of a circle.

Next, a lower semisphere of an arbitrary sphere D (Figure B1(b)) is taken as a free body. To simplify the problem, the force acting on it from the spheres of its layer and its gravity is not considered. Then, its force diagram, which includes the P D exerted by its upper semisphere and three P x exerted by the three spheres (A, B, and C) supporting it, is shown in (Figure B1(c)). Application of the Newton’s second law in the z-direction yields the following equation:

$$ 3P_{\text{x}} \cos \alpha - P_{\text{D}} = 0 $$
(B2)
$$ P_{\text{x}} = \frac{{P_{\text{D}} }}{3\cos \alpha } = \frac{{P_{\text{D}} }}{{3 \cdot \frac{\sqrt 6 }{3}}} = \frac{{P_{\text{D}} }}{\sqrt 6 } $$
(B3)

Finally, the pressure exerted on the section perpendicular to the radius connecting the center of the sphere and the contact point between the two spheres (Figure B1(d)), can be estimated by

$$ P_{\text{c}} = \frac{{P_{\text{x}} }}{{\pi [r_{\text{p}}^{2} - (r_{\text{p}} - x)^{2} ]}} $$
(B4)

where x is the distance from the contact point to the section as shown in Figure B1(d). A substitution of Eqs. [B1] and [B3] into Eq. [B4] yields

$$ P_{\text{c}} = \frac{\sqrt 2 }{\pi }P_{\text{a}} \frac{{r_{\text{p}}^{2} }}{{r_{\text{p}}^{2} - (r_{\text{p}} - x)^{2} }} $$
(B5)

It should be noted that Eq. [B5] only applies to the location close to the contact point because the force acting on the location far from the contact point may be different from the P c estimated by Eq. [B5]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Xiong, Y., Li, Y. et al. Spark Plasma Sintering of Nanostructured Aluminum: Influence of Tooling Material on Microstructure. Metall Mater Trans A 44, 1908–1916 (2013). https://doi.org/10.1007/s11661-012-1533-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1533-6

Keywords

Navigation