Skip to main content
Log in

Oxide Scale Morphology and Chromium Evaporation Characteristics of Alloys for Balance of Plant Applications in Solid Oxide Fuel Cells

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article compares chromium evaporation characteristics of chromia- and alumina-forming alloys at high temperatures [1123 K and 1223 K (800 °C to 950 °C)] in humid air (3 and 12 pct H2O) and presents a mechanistic understanding of variation in chromium evaporation on the basis of their oxide scale morphologies. For this study, an alloy from each of the distinct chromia-forming, alumina-forming, and chromia-alumina transition characteristics was selected (i.e., an alumina-forming alloy (Aluchrom YHf), a chromia-forming alloy (AISI 310S-austentic stainless steel), and an alloy that undergoes transition from chromia to alumina formation (Nicrofer6025 HT)). For generating baseline chromium evaporation data, pure chromium oxide was also tested. The chromium evaporation rate decreased in the order pure chromium oxide > AISI 310S > Nicrofer6025 HT > Aluchrom YHf. Surface morphologies, cross sections, and chemical characteristics of oxide scales were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy and focused ion beam. The variation in chromium evaporation of different alloys is explained on the basis of physical and chemical characteristics of the oxide scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Blum: CFI-Ceram. Forum Int., 2009, vol. 86, pp. E17-22.

    Google Scholar 

  2. S. Farhad and F. Hamdullahpur: J. Power Sources, 2009, vol. 193, pp. 632-38.

    Article  CAS  Google Scholar 

  3. T.A. Adams and P.I. Barton: Aiche J., 2010, vol. 56, pp. 3120-36.

    Article  CAS  Google Scholar 

  4. Y. Hao and D.G. Goodwin: J. Power Sources, 2008, vol. 183, pp. 157-63.

    Article  CAS  Google Scholar 

  5. P. Kazempoor, V. Dorer and F. Ommi: Inl. J. Hydrog. Energy, 2009, vol. 34, pp. 8630-44.

    Article  CAS  Google Scholar 

  6. K. Lobachyov and H.J. Richter: J. Energy Resour. Technol.-Trans. ASME, 1996, vol. 118, pp. 285-92.

    Article  Google Scholar 

  7. J.W. Fergus: Mater. Sci. Eng. A, 2005, vol. 397, pp. 271-83.

    Article  Google Scholar 

  8. A. Lashtabeg and S.J. Skinner: J. Mater. Chem., 2006, vol. 16, pp. 3161-70.

    Article  CAS  Google Scholar 

  9. M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir and Y. Choi: Mater. Today, 2011, vol. 14, pp. 534-46.

    Article  CAS  Google Scholar 

  10. M.C. Williams, J. Strake, and W. Sudoval: J. Power Sources, 2006, vol. 159, pp.1241–47.

  11. M.C. Williams, J.P. Strakey and W.A. Surdoval: Int. J. Appl. Ceram. Technol., 2005, vol. 2, pp. 295-300.

    Article  CAS  Google Scholar 

  12. E. Fontell, T. Kivisaari, N. Christiansen, J.B. Hansen and J. Palsson: J. Power Sources, 2004, vol. 131, pp. 49-56.

    Article  CAS  Google Scholar 

  13. S.E. Veyo, L.A. Shockling, J.T. Dederer, J.E. Gillett and W.L. Lundberg: J. Eng. Gas. Turbines Power-Trans. ASME, 2002, vol. 124, pp. 845-9.

    Article  CAS  Google Scholar 

  14. S.P. Jiang, J.P. Zhang and X.G. Zheng: J. Eur. Ceram. Soc., 2002, vol. 22 (3), pp. 361-73.

    Article  CAS  Google Scholar 

  15. H. Yokokawa, T. Horita, N. Sakai, K. Yamaji, M.E. Brito, Y.P. Xiong and H. Kishimoto: Solid State Ionics, 2006, vol. 177, pp. 3193-8.

    Article  CAS  Google Scholar 

  16. K. Hilpert, D. Das, M. Miller, D.H. Peck and R. Weiβ: J. Electrochem. Soc., 1996, vol. 143, pp. 3642–47.

  17. H. Ebrahimifar and M. Zandrahimi: Surf. Coat. Technol., 2011, vol. 206, pp. 75-81.

    Article  CAS  Google Scholar 

  18. K. L. Wang, Y. J. Liu and J. W. Fergus: J. Am. Ceram. Soc., 2011, vol. 94 (12), pp. 4490–5.

    Article  CAS  Google Scholar 

  19. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, L. Singheiser and W.J. Quadakkers: Solid State Ionics, 2008, vol. 179, pp. 2406-15.

    Article  CAS  Google Scholar 

  20. W.N. Liu, X. Sun, E.V. Stephens and M.A. Khaleel: J. Power Sources, 2008, vol. 189 (2), pp. 1044-50.

    Article  Google Scholar 

  21. R. Trebbels, T. Markus and L. Singheiser: J. Fuel Cell Sci. Technol., 2010, vol. 7, pp. 011013-6.

    Article  Google Scholar 

  22. M. Stanislowski, E. Wessel, K. Hilpert, T. Markus and L. Singheiser: J. Electrochem. Soc., 2007, vol. 154, pp. A295-306.

    Article  Google Scholar 

  23. G.R. Holcomb and D.E. Alman: J. Mater. Eng. Perform., 2006, vol. 15, pp. 394-8.

    Article  CAS  Google Scholar 

  24. K. Gerdes and C. Johnson: J. Fuel Cell Sci. Technol., 2009, vol. 6, pp. 011018-5.

    Article  Google Scholar 

  25. M. Stanislowski, J. Froitzheim, L. niewolak, W.J. Quadakkers, K. Hilpert, T. Markus and L. Singheiser: J. Power Sources, 2007, vol. 164, pp. 578-89.

    Article  CAS  Google Scholar 

  26. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D.F. Johnson, J. K. Olminsky and M.D. Allendorf: J. Phys. Chem. A, 2007, vol. 111, pp. 1971-80.

    Article  CAS  Google Scholar 

  27. B.B. Ebbinghaus: Combust. Flame, 1993, vol. 93, pp. 119-37.

    Article  CAS  Google Scholar 

  28. C. Gindorf, L. Singheiser and K. Hilpert: Steel Res., 2001, vol. 72, pp. 528-33.

    CAS  Google Scholar 

  29. Y.W. Kim and G. R. Belton,: Metall. Trans., 1974, vol. 5, pp. 1811-6.

    Article  CAS  Google Scholar 

  30. G. C. Fryburg, R. A. Miller, F. J. Kohl and C. A. Stearns: J. Electrochem. Soc, 1977, vol. 124, pp. 1738-43.

    Article  CAS  Google Scholar 

  31. H. Kurokawa, C.P. Jacobson, L.C. De Jonghe, and S.J. Visco: Solid State Ionics, 2007, vol. 178, pp. 287–96.

  32. M. Machkova, A. Zwetanova, V. Kozhukharov and S. Raicheva: J. Univ. Chem. Technol. Metallurgy, 2008, vol. 43 (1), pp. 53-8.

    CAS  Google Scholar 

  33. J. R. Regina, J. N. DuPont and A. R. Marder: Oxid. Metals, 2004, vol. 61, pp. 69-90.

    Article  CAS  Google Scholar 

  34. G. Berthome, E. NDah, Y. Wouters, A. Galerie, Materials and Corrosion, 2005, vol 56(6), pp. 389-392.

    Article  CAS  Google Scholar 

  35. P. S. Santosa, H. S. Santos and S.P. Toledo: Mater. Res., 2000, vol. 3, pp. 104-14.

    Google Scholar 

  36. J.A. Nychka and D.R. Clarke: Oxid. Metals, 2005, vol. 63, pp. 325-52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the US Department of Energy and the Rolls Royce Fuel Cell Systems under Award Number DE-FE0000303. The authors also acknowledge Dr. S. Bhowmick for technical assistance, Mr. R. Ristau for the FIB analysis, and Mr. Peter Menard and Mark Drobney for laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Singh.

Additional information

Manuscript submitted December 21, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, L., Verma, A., Goettler, R. et al. Oxide Scale Morphology and Chromium Evaporation Characteristics of Alloys for Balance of Plant Applications in Solid Oxide Fuel Cells. Metall Mater Trans A 44 (Suppl 1), 193–206 (2013). https://doi.org/10.1007/s11661-012-1492-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1492-y

Keywords

Navigation