Skip to main content
Log in

Grain Growth in Multiple Scales of Polycrystalline AZ31 Magnesium Alloy by Phase-Field Simulation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A multiscale phase-field model was established on the assumption of an isotropic single-phase system to simulate the realistic spatiotemporal process of grain growth for polycrystalline Mg-Al-Zn alloy AZ31, especially to determine the mechanisms for unique nanostructure evolution. The expression of the local free energy density function was improved according to different driving forces. The grain boundary range and grain boundary energy were studied in each scale to determine the correct gradient and coupling parameters, respectively. It is shown that the grain boundary energy in nanoscales is lower down to about half that in the micron scale, the time exponent n in the kinetic equation is varied from 5 to 2 from the nanograins to the micrograins, and the grain growth rate in nanoscale is much slower in an order of magnitude than that in the micron scale. These findings can be proven by the limited experimental results in the literature. Simulations expose that the solute atoms like to segregate at the grain boundaries much more severely in nanostructure than that in conventional microstructure, and this may be the reason why nanostructure shows a low boundary mobility to result in a strange low grain growth rate at up to an initial long annealing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.W. Siegel and G.E. Fougere: Nanostruct. Mater., 1995, vol. 6 (1–4), pp. 205–16.

    Article  CAS  Google Scholar 

  2. K. Youssef, R. Scattergood, K. Murty, and C. Koch: Scripta Mater., 2006, vol. 54 (2), pp. 251–56.

    Article  CAS  Google Scholar 

  3. K.V. Rajulapati, R.O. Scattergood, K.L. Murty, Z. Horita, T.G. Langdon, and C.C. Koch: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2528–34.

    Article  CAS  Google Scholar 

  4. A.P. Garcia, D. Sen, and M.J. Buehler: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3889–97.

    Article  Google Scholar 

  5. R. Phillips: Curr. Opin. Solid State Mater. Sci., 1998, vol. 3 (6), pp. 526–32.

    Article  Google Scholar 

  6. M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48 (1), pp. 1–10.

    Article  Google Scholar 

  7. W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip: Phys. Rev. Lett., 2001, vol. 86 (25), pp. 5727–30.

    Article  CAS  Google Scholar 

  8. Y.P. Zong, W. Guo, G. Wang, and F. Zhang: J. Guangdong Non-Ferrous Met., 2005, vol. 15 (2), pp. 117–23.

    CAS  Google Scholar 

  9. E.B. Tadmor, M. Ortiz, and R. Phillips: Phil. Mag. A, 1996, vol. 73 (6), pp. 1529–63.

    Article  Google Scholar 

  10. V. Vaithyanathan, C. Wolverton, and L.Q. Chen: Phys. Rev. Lett., 2002, vol. 88 (12), p. 125503.

    Article  CAS  Google Scholar 

  11. P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136 (3B), pp. B864–B871.

    Article  Google Scholar 

  12. B.J. Alder and T. Wainwright: J. Chem. Phys., 1959, vol. 31, pp. 459–66.

    Article  CAS  Google Scholar 

  13. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller: J. Chem. Phys., 1953, vol. 21, pp. 1087–92.

    Article  CAS  Google Scholar 

  14. H. Frost, C. Thompson, and D. Walton: Acta Metall. Mater., 1990, vol. 38 (8), pp. 1455–62.

    Article  Google Scholar 

  15. Z.S. Yu, P. Liu, and Y.Q. Long: Mater. Heat Treat., 2008, vol. 37, pp. 94–98.

    Google Scholar 

  16. A. Karma and W.J. Rappel: Phys. Rev. E, 1996, vol. 53 (4), pp. 3017–20.

  17. A. Karma and W.J. Rappel: Phys. Rev. E, 1998, vol. 57 (4), pp. 4323–49.

  18. Y.U. Wang, Y.M. Jin, A.M. Cuitino, and A.G. Khachaturyan: Acta Mater., 2001, vol. 49 (10), pp. 1847–57.

    Article  CAS  Google Scholar 

  19. Y. Wen, B. Wang, J. Simmons, and Y. Wang: Acta Mater., 2006, vol. 54 (8), pp. 2087–99.

    Article  CAS  Google Scholar 

  20. B. Böttger, J. Eiken, M. Ohno, G. Klaus, M. Fehlbier, R. Schmid Fetzer, I. Steinbach, and A. Bührig Polaczek: Adv. Eng. Mater., 2006, vol. 8 (4), pp. 241–47.

    Article  Google Scholar 

  21. B. Böttger, J. Eiken, and I. Steinbach: Acta Mater., 2006, vol. 54 (10), pp. 2697–2704.

    Article  Google Scholar 

  22. Y.P. Zong, M.T. Wang, and W. Guo: Acta Phys. Sin.-Chin. Ed., 2009, vol. 58, pp. S161–S168.

    Google Scholar 

  23. M. Wang, B.Y. Zong, and G. Wang: Comput. Mater. Sci., 2009, vol. 45 (2), pp. 217–22.

    Article  CAS  Google Scholar 

  24. X.G. Zhang, Y.P. Zong, M.T. Wang, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2011, vol. 60 (6), pp. 755–63.

    Google Scholar 

  25. Y. Wu, B. Zong, and M. Wang: Mater. Sci. Forum, 2010, vol. 633, pp. 697–705.

    Article  Google Scholar 

  26. X.G. Zhang, Y.P. Zong, and Y. Wu: Acta Phys. Sin.-Chin. Ed., 2012, vol. 21 (8), pp. 088104-1–088104-9.

  27. S.M. Allen and J.W. Cahn: Acta Metall., 1979, vol. 27 (6), pp. 1085–95.

    Article  CAS  Google Scholar 

  28. J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28 (2), pp. 258–67.

    Article  CAS  Google Scholar 

  29. D. Fan and L.Q. Chen: Acta Mater., 1997, vol. 45, pp. 611–22.

    Article  CAS  Google Scholar 

  30. A. Kazaryan, Y. Wang, S. Dregia, and B.R. Patton: Phys. Rev. B, 2001, vol. 63 (18), pp. 184102-1–184102-11.

    Article  Google Scholar 

  31. Y. Wen, J. Simmons, C. Shen, C. Woodward, and Y. Wang: Acta Mater., 2003, vol. 51 (4), pp. 1123–32.

    Article  CAS  Google Scholar 

  32. S.G. Kim, D.I. Kim, W.T. Kim, and Y.B. Park: Phys. Rev. E, 2006, vol. 74 (6), p. 061605.

    Article  Google Scholar 

  33. Q. Chen, N. Ma, K. Wu, and Y. Wang: Scripta Mater., 2004, vol. 50 (4), pp. 471–76.

    Article  CAS  Google Scholar 

  34. C. Shen, Q. Chen, Y. Wen, J. Simmons, and Y. Wang: Scripta Mater., 2004, vol. 50 (7), pp. 1023–28 and pp. 1029–34.

  35. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1998, vol. 58 (3), pp. 3316–22.

  36. S.G. Kim, W.T. Kim, and T. Suzuki: Phys. Rev. E, 1999, vol. 60 (6), pp. 7186–97.

  37. T. Nishizawa and S.M. Hao: Thermodynamics of Microstructure, 1st ed., Chemical Industry Press, Beijing, 2006, pp. 135–136.

  38. C. Shek, J. Lai, and G. Lin: Nanostruct. Mater., 1999, vol. 11 (7), pp. 887–93.

    Article  CAS  Google Scholar 

  39. J.Q. Wang, P. Geng, M.G. Zeng, B.J. Zhang, and C.F. Qian: Chin. J. Mater. Res., 1997, vol. 11, pp. 316–18.

    CAS  Google Scholar 

  40. Y. Zhang, N. Tao, and K. Lu: Acta Mater., 2008, vol. 56 (11), pp. 2429–40.

    Article  CAS  Google Scholar 

  41. C. Deng: Fabrication of Ultra-Fine Grain Magnesium Alloy by Powder Metallurgy and Research on the Microstructure and Property, Harbin Institute of Technology, Harbin, 2009, p. 24.

  42. M. Hillert: Acta Metall., 1965, vol. 13 (3), pp. 227–38.

    Article  CAS  Google Scholar 

  43. R.C. Liu, L.Y. Wang, L.G. Gu, and G.S. Huang: Light Alloy Fabric Technol., 2004, vol. 32, pp. 22–25.

    CAS  Google Scholar 

  44. T. Malow and C. Koch: Acta Mater., 1997, vol. 45 (5), pp. 2177–86.

    Article  CAS  Google Scholar 

  45. B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Acta Mater., 2000, vol. 48 (3), pp. 789–96.

    Article  Google Scholar 

  46. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  47. A. Michels, C. Krill, H. Ehrhardt, R. Birringer, and D. Wu: Acta Mater., 1999, vol. 47 (7), pp. 2143–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Nature Science Foundation of China, Grant Nos. 51171040 and 50771028, and the High Technology Research and Development Program of China (863), Grant No. 2013AAJY3164, for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Y. Zong.

Additional information

Manuscript submitted June 6, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Zong, B.Y., Zhang, X.G. et al. Grain Growth in Multiple Scales of Polycrystalline AZ31 Magnesium Alloy by Phase-Field Simulation. Metall Mater Trans A 44, 1599–1610 (2013). https://doi.org/10.1007/s11661-012-1478-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1478-9

Keywords

Navigation