Skip to main content
Log in

Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Controlled forging of microalloyed steels is a viable economical process for the manufacture of automotive parts. Ferrite grain refinement and precipitation hardening are the major microstructural parameters to enhance the mechanical properties of the forged components. In the current study, a modified thermomechanical treatment for additional ferrite grain refinement is developed by exploiting the effect of Nb in increasing the T NR (no recrystallization temperature) and via phase transformation from a pancaked austenite. This is accomplished by performing the final passes of forging below the T NR temperature followed by a controlled cooling stage to produce a mixture of fine grained ferrite, small scaled acicular ferrite as well as a limited amount of martensite. The effect of processing parameters in terms of forging strain, cooling rate and aging condition on the microstructure and mechanical properties of a medium carbon, Nb containing microalloyed steel is investigated. An attempt is made to identify a suitable microstructure that provides a proper combination of high strength and good impact toughness. The processing-microstructure relationships for the proposed novel forging procedure are discussed, and directions for further improvements are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann, Oxford, 2006.

    Google Scholar 

  2. H. Demir: Int. J. Adv. Manuf. Technol., 2008, vol. 35, pp. 1041–46.

    Article  Google Scholar 

  3. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997.

    Google Scholar 

  4. D.K. Matlock, G. Krauss, and J.G. Speer: Mater. Sci. Forum, 2005, vols. 500–501, pp. 87–96.

    Article  Google Scholar 

  5. E.G. Nisbett: Forgings: Design, Production, Selection, Testing and Application, ASTM International, West Conshohocken, PA, 2005.

    Book  Google Scholar 

  6. S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, and S.G. Jansto: Mater. Sci. Eng. A, 2006, vol. 437, pp. 436–45.

    Article  Google Scholar 

  7. S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S. Jansto: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 335–43.

    Google Scholar 

  8. I. Tamura, C. Ouchi, T. Tanaka, and H. Sekine: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworths, Cornwall, 1988.

    Google Scholar 

  9. P.R. Rios and R.R. de Avillez: Mater. Sci. Eng. A, 1993, vol. 160, pp. 101–06.

  10. Y. Weng: Ultra-Fine Grained Steels, Springer, New York, 2010.

    Google Scholar 

  11. A. DeArdo, I. Weiss, G. Firzsimons, and K. Mielityine-Tiitto, eds.: The Influence of Niobium, Vanadium and Nitrogen on the Response of Austenite to Reheating and Hot Deformation in Microalloyed Steels, Warrendale, 1980.

  12. P. Zhao and J.D. Boyd: Mater. Sci. Technol., 2004, vol. 20, pp. 695–704.

    Article  Google Scholar 

  13. R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh: J. Mater. Process. Technol., 2006, vol. 171, pp. 301–05.

    Article  CAS  Google Scholar 

  14. Y.C. Lin, M.-S. Chen, and J. Zhong: Comput. Mater. Sci., 2008, vol. 42, pp. 470–77.

    Article  CAS  Google Scholar 

  15. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Netherland, 2004.

    Google Scholar 

  16. Z.X. Yuan, S.H. Song, Y.H. Wang, J. Liu, and A.M. Guo: Mater. Lett., 2005, vol. 59, pp. 2048–51.

    Article  CAS  Google Scholar 

  17. F. Fazeli: The University of British Columbia (Canada), Canada, 2005.

  18. D. Tabor: The Hardness of Metals, Oxford University Press, London, 2000.

    Google Scholar 

  19. A. Bakkaloglu: Mater. Lett., 2002, vol. 56, pp. 263–72.

    Article  CAS  Google Scholar 

  20. T.H. Courtney, Mechanical Behaviour of Materials, McGraw-Hill, Singapore, 1990.

    Google Scholar 

  21. F. Ma, G. Wen, P. Tang, G. Xu, F. Mei, and W. Wang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 81–86.

    Article  Google Scholar 

  22. A. Itman, K.R. Cardoso, and H.J. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 49–55.

    Article  CAS  Google Scholar 

  23. M. Olasolo, P. Uranga, J.M. Rodriguez-Ibabe, and B. López: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2559–69.

    Article  Google Scholar 

  24. M. Mazinani and W.J. Poole: Adv. Mater. Res., 2006, vols. 15–17, pp. 774–79.

    Google Scholar 

  25. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.

    Article  CAS  Google Scholar 

  26. S.N. Prasad and D.S. Sarma: Mater. Sci. Eng. A, 2005, vol. 399, pp. 161–72.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for cooperative supports of Part Sazan Forge Corporation. Iran Alloy Steel Corporation is also highly appreciated for providing the Nb microalloyed steel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooya Hosseini Benhangi.

Additional information

Manuscript submitted November 24, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakhaie, D., Hosseini Benhangi, P., Fazeli, F. et al. Controlled Forging of a Nb Containing Microalloyed Steel for Automotive Applications. Metall Mater Trans A 43, 5209–5217 (2012). https://doi.org/10.1007/s11661-012-1353-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1353-8

Keywords

Navigation