Skip to main content
Log in

Effect of C Fraction on Corrosion Properties of High Interstitial Alloyed Stainless Steels

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of carbon fraction on various corrosion properties of Fe18Cr10MnNC alloys were investigated. The alloys contained 0.6 wt pct of nitrogen and carbon, and the carbon fraction varied from 0.03 to 0.47. With increasing the carbon fraction, corrosion potential raised, critical dissolution rate decreased, and pitting potential increased. The high carbon fraction was responsible for high resistance against intergranular corrosion of the alloys aged at 1123 K (850 °C) for 100 seconds. But after aging at 1123 K (850 °C) for 600 seconds, the intergranular corrosion accelerated with increasing the carbon fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.O. Speidel: Mat.-Wiss. u. Werkstofftech., 2006, vol. 37, pp. 875–80.

    Article  CAS  Google Scholar 

  2. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  3. P.J. Uggowitzer, R. Magdowski, and M.O. Speidel: ISIJ Int., 1996, vol. 36, pp. 901–08.

    Article  CAS  Google Scholar 

  4. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  5. P.R. Levey and A. van Bennekom: Corrosion, 1995, vol. 51, pp. 911–21.

    Article  CAS  Google Scholar 

  6. Urs.I. Thomann and P.J. Uggowitzer: Wear, 2000, vol. 239, pp. 48–58.

  7. C. Blawert, H. Kalvelage, B.L. Mordike, G.A. Collins, K.T. Short, Y. Jiraskova, and O. Schneeweiss: Surf. Coat. Tech., 2001, vol. 136, pp. 181–87.

    Article  CAS  Google Scholar 

  8. V.G. Gavriljuk, B.D. Shanina, and H. Berns: Acta. Mater., 2000, vol. 48, pp. 3879–93.

    Article  CAS  Google Scholar 

  9. V.G. Gavriljuk, O. Razumov, Yu. Petrov, I. Surzhenko, and H. Berns: Steel Res. Int., 2007, vol. 78, pp. 720–23.

    CAS  Google Scholar 

  10. H. Berns, V.G. Gavriljuk, S. Reidner, and A. Tyshchenko: Steel Res. Int., 2007, vol. 78, pp. 714–19.

    CAS  Google Scholar 

  11. V.G. Gavriljuk, B.D. Shanina and H. Berns: Mater. Sci. Eng. A, 2008, vol. 481–482, pp. 707–12.

    Google Scholar 

  12. L.M. Roncery, S. Wever, and W. Theisen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2471–79.

    Article  Google Scholar 

  13. H.-Y. Ha, T.-H. Lee, C.-S. Oh, and S.-J. Kim: Scripta Mater., 2009, vol. 61, pp. 121–24.

    Article  CAS  Google Scholar 

  14. T.-H. Lee, H.-Y. Ha, and S.-J. Kim: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3543–48.

    Article  Google Scholar 

  15. Y. Sun and E. Haruman: Vacuum, 2006, vol. 81, pp. 114–19.

    Article  CAS  Google Scholar 

  16. A.P. Majidi and M.A. Streicher: Corrosion, 1984, vol. 40, pp. 584–93.

    Article  CAS  Google Scholar 

  17. T. Amadou, C. Braham, and H. Sidhom: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3499–3513.

    Article  CAS  Google Scholar 

  18. N. Parvanthavarthini, S. Mulki, R.K. Dayal, I. Samajdar, K.V. Mani, and B. Raj: Corros. Sci., 2009, vol. 51, pp. 2144–50.

    Article  Google Scholar 

  19. M. Abdallah: Mater. Chem. Phys., 2003, vol. 82, pp. 786–92.

    Article  CAS  Google Scholar 

  20. T.L. Sudesh, L. Wijesinghe, and D.J. Blackwood: Appl. Surf. Sci., 2006, vol. 253, pp. 1006–09.

    Article  Google Scholar 

  21. Y. Cao, F. Ernst, and G.M. Michal: Acta Mater., 2003, vol. 51, pp. 4171–81.

    Article  CAS  Google Scholar 

  22. F.J. Martin, E.J. Lemieux, T.M. Newbauer, R.A. Bayles, P.M. Natixhan, H. Kahn, G.M. Michal, and F. Ernst: Electrochem. Solid-State Lett., 2007, vol. 10, pp. C76–78.

    Article  CAS  Google Scholar 

  23. V.V. Nikam, R.G. Reddy, S.R. Collins, P.C. Williams, G.H. Schiroky, and G.W. Henrich: Electrochim. Acta, 2008, vol. 53, pp. 2743–50.

    Article  CAS  Google Scholar 

  24. K. Farrell, E.D. Specht, J. Pang, L.R. Walker, A. Rar and J.R. Mayotte: J. Nucl. Mater., 2005, vol. 343, pp. 123–33.

    Article  CAS  Google Scholar 

  25. A.H. Heuer, H. Kahn, F. Ernst, G.M. Michal, D.B. Hovis, R.J. Rayne, F.J. Martin and P.M. Natishan: Acta Mater., 2012, vol. 60, pp. 716–25.

    Article  CAS  Google Scholar 

  26. Y. Sun: Mater. Lett., 2005, vol. 59, pp. 3410–13.

    Article  CAS  Google Scholar 

  27. K. Feng. T. Hu, X. Cai, Z. Li, and P.K. Chu: J. Power Sources, 2012, vol. 199, pp. 207–13.

    Article  CAS  Google Scholar 

  28. A.G. Balanyuk, V.G. Gavriljuk, V.N. Shivanyuk, A.I. Tyshchenko, and J.C. Rawers: Acta Mater., 2000, vol. 48, pp. 3813–21.

    Article  CAS  Google Scholar 

  29. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon-Young Ha.

Additional information

Manuscript submitted March 28, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, HY., Lee, TH. & Kim, SJ. Effect of C Fraction on Corrosion Properties of High Interstitial Alloyed Stainless Steels. Metall Mater Trans A 43, 2999–3005 (2012). https://doi.org/10.1007/s11661-012-1304-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1304-4

Keywords

Navigation