Skip to main content
Log in

Textural Evolution During Dynamic Recovery and Static Recrystallization of Molybdenum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current investigation, sintered molybdenum specimens with random textures were deformed in compression in a deformation dilatometer over a range of temperatures from 0.44T M [K] to 0.61T M [K] and true strains between φ = 0.3 and 0.92. Subsequent annealing treatments were carried out in the dilatometer in order to study static recrystallization phenomena. Electron backscatter diffraction scans of deformed and recrystallized specimens revealed that the microstructure after hot deformation is a recovered structure with two remarkably strong orientation components, 〈111〉 parallel to the loading direction exhibiting a high Taylor factor and 〈100〉 parallel to the loading direction with a low one. The fraction of the first component increases with lowering the deformation temperature, while static recrystallization leads to a higher fraction of the second component. The late-stage recrystallization behavior is sluggish due to a high amount of recovery. The results are discussed employing models for textural evolution in body-centered cubic (bcc) metals on the one hand and recrystallization of high-stacking-fault energy materials on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Martienssen and H. Warlimont: Springer Handbook of Condensed Matter and Materials Data, 1st ed., Springer, Berlin, Germany, 2005.

  2. V. Guttmann: J. Less Common. Met., 1970, vol. 21, pp. 51–61.

    Article  CAS  Google Scholar 

  3. G.V. Estulin and Y.I. Demkin: Sci. Heat. Treat., 1962, vol. 4, pp. 273–75.

    Article  Google Scholar 

  4. E. Pink: Planseeberichte für Pulvermetallurgie, 1965, vol. 13, pp. 100–04.

    CAS  Google Scholar 

  5. S. Primig, H. Leitner, H. Clemens, A. Lorich, W. Knabl, and R. Stickler: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 703–08.

    Article  CAS  Google Scholar 

  6. T. Mrotzek, A. Hoffmann, and U. Martin: Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 298–305.

    Article  CAS  Google Scholar 

  7. J.S. Hirschhorn: J. Less Common Met., 1963, vol. 5, pp. 493–509.

    Article  CAS  Google Scholar 

  8. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  9. M. Semchyshen and G.A. Timmons: Trans. AIME, 1952, vol. 194, pp. 279–86.

    Google Scholar 

  10. P.I. Welch and G.J. Davies: Texture Microstruct., 1983, vol. 6, pp. 21–38.

    Article  CAS  Google Scholar 

  11. D. Raabe and K. Lücke: Z. Metallkd., 1994, vol. 85, pp. 302–06.

    CAS  Google Scholar 

  12. I. Hünsche, C.-G. Oertel, R. Tamm, and W. Skrotzki: Mater. Sci. Forum, 2004, vols. 467–470, pp. 495–500.

  13. C.-G. Oertel, I. Huensche, W. Skrotzki, W. Knabl, A. Lorich, and J. Resch: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 79–83.

  14. C.-G. Oertel, I. Hünsche, W. Skrotzki, A. Lorich, W. Knabl, J. Resch, and T. Trenkwalder: Int. J. Refract. Met. Hard Mater., 2010, vol. 28, 722–27.

    Article  CAS  Google Scholar 

  15. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.

    Article  CAS  Google Scholar 

  16. D. Raabe and K. Lücke: Mater. Sci. Forum, 1994, vols. 157–162, pp. 597–610.

  17. D. Raabe, G. Schlenkert, H. Weisshaupt, and K. Lücke: Mater. Sci. Technol., 1994, vol. 10, pp. 299–305.

    Article  CAS  Google Scholar 

  18. M. Hölscher, D. Raabe, and K. Lücke: Steel Res. Int., 1991, vol. 62, pp. 567–75.

    Google Scholar 

  19. D. Raabe: Steel Res. Int., 1995, vol. 66, pp. 222–29.

    CAS  Google Scholar 

  20. Y.B. Park, D.N. Lee. and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 3371–79.

    Article  CAS  Google Scholar 

  21. Y.B. Park, D.N. Lee. and G. Gottstein: Mater. Sci. Eng. A, 1998, vol. 257, pp. 178–84.

    Article  Google Scholar 

  22. D.N. Lee: Scripta Metall. Mater., 1995, vol. 32, pp. 1689–94.

    Article  CAS  Google Scholar 

  23. W. Reiter and F. Benesovsky: Planseeberichte für Pulvermetallurgie, 1972, vol. 20, pp. 203–18.

    CAS  Google Scholar 

  24. T. Senuma, H. Yada, R. Shimizu, and J. Harase: Acta Metall. Mater., 1990, vol. 38, pp. 2673–81.

    Article  CAS  Google Scholar 

  25. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 697–705.

    Article  CAS  Google Scholar 

  26. M.R. Barnett and J.J. Jonas: ISIJ Int., 1997, vol. 37, pp. 706–14.

    Article  CAS  Google Scholar 

  27. M.R. Barnett: ISIJ Int., 1998, vol. 38, pp. 78–85.

    Article  CAS  Google Scholar 

  28. S. Primig, H. Leitner, A. Lorich, W. Knabl, H. Clemens, and R. Stickler: Pract. Metall., 2011, vol. 48, pp. 344–55.

    CAS  Google Scholar 

  29. B.A. Simkin and M.A. Crimp: Ultramicroscopy, 1999, vol. 77, pp. 65–75.

    Article  CAS  Google Scholar 

  30. S.-H. Choi and Y.-S. Jin: Mater. Sci. Eng. A, 2004, vol. 371, pp. 149–59.

    Article  Google Scholar 

  31. D.A. Hughes, N. Hansen, and D.J. Bamann: Scripta Mater., 2003, vol. 48, pp. 147–53.

    Article  CAS  Google Scholar 

  32. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  33. H.J. McQueen: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 345–62.

    Article  CAS  Google Scholar 

  34. H.J. McQueen and W. Blum: Mater. Sci. Eng. A, 2000, vol. 290, pp. 95–107.

    Article  Google Scholar 

  35. R.D. Doherty, G. Gottstein, J. Hirsch, W.B. Hutchinson, K. Lucke, E. Nes, and P.J. Wilbrandt: Proc. ICOTOM8, J.S. Kallend and G. Gottstein, eds., TMS, Warrendale, PA, 1988, pp. 563–72.

  36. S.J. Hales, T.R. McNelley, and H.J. McQueen: Metall. Trans. A, 1991, vol. 22A, pp. 1037–47.

    CAS  Google Scholar 

  37. J. Neges, B. Ortner, G. Leichtfried, and H.P. Stüwe: Mater. Sci. Eng. A, 1995, vol. 196, pp. 129–33.

    Article  Google Scholar 

  38. S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 1999, vol. 283, pp. 274–88.

    Google Scholar 

  39. S. Gourdet and F. Montheillet: Acta Mater., 2002, vol. 50, pp. 2801–12.

    Article  CAS  Google Scholar 

  40. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  CAS  Google Scholar 

  41. H.J. McQueen and M.E. Kassner: Scripta Mater., 2004, vol. 51, pp. 461–65.

    Article  CAS  Google Scholar 

  42. H.J. McQueen and S. Spigarelli: Mater. Sci. Eng. A, 2007, vol. 462, pp. 37–44.

    Article  Google Scholar 

  43. J.K. Solberg, H.J. McQueen, N. Ryum, and E. Nes: Phil. Mag. A, 1989, vol. 60, pp. 447–71.

    Article  CAS  Google Scholar 

  44. H.J. McQueen, J.K. Solberg, N. Ryum, and E. Nes: Phil. Mag. A, 1989, vol. 60, pp. 473–85.

    Article  CAS  Google Scholar 

  45. R. Srinivasan, G.B. Viswanathan, V.I. Levit, and H.L. Fraser: Mater. Sci. Eng. A, 2009, vol. 507, pp. 179–89.

    Article  Google Scholar 

  46. R. Palme: Planseeberichte für Pulvermetallurgie, 1968, vol. 16, pp. 159–68.

    Google Scholar 

  47. I.L. Dillamore and H. Katoh: Met. Sci., 1974, vol. 8, pp. 73–83.

    CAS  Google Scholar 

  48. C. Palme: Ph. D. Dissertation, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria, 1970.

  49. P.A. Beck and P.R. Sperry: J. Appl. Phys., 1949, vol. 21, pp. 150–52.

    Article  Google Scholar 

  50. R.D. Doherty: Met. Sci., 1974, vol. 8, pp. 132–42.

    CAS  Google Scholar 

  51. B. Hutchinson: Scripta Metall. Mater., 1992, vol. 27, pp. 1471–75.

    Article  CAS  Google Scholar 

  52. R.W. Cahn: Proc. Phys. Soc., 1950, vol. 63, pp. 323–36.

    Google Scholar 

  53. C. Crussard, F. Aubertin, B. Jaoul, and G. Wyon: Progr. Metall. Phys., 1950, vol. 2C, pp. 193–202.

    Article  Google Scholar 

  54. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren: Scripta Mater., 1997, vol. 37, pp. 869–74.

  55. M. Oyarzabal, A. Martinez-de-Guerenu, and I. Gutierrez: Mater. Sci. Eng. A, 2008, vol. 485, pp. 200–09.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Primig.

Additional information

Manuscript submitted December 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primig, S., Leitner, H., Knabl, W. et al. Textural Evolution During Dynamic Recovery and Static Recrystallization of Molybdenum. Metall Mater Trans A 43, 4794–4805 (2012). https://doi.org/10.1007/s11661-012-1291-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1291-5

Keywords

Navigation