Skip to main content
Log in

Analyses of Transformation Kinetics of Carbide-Free Bainite Above and Below the Athermal Martensite-Start Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The isothermal transformation kinetics of austenite decomposition in Fe-0.4C-2.78Mn-1.81Si was analyzed by an electrical resistivity technique in the temperature interval 723 K to 418 K (450 °C to 145 °C). The analysis of transformation kinetics of the bainite transformation was performed using the Johnson–Mehl–Avrami–Kolgomorov (JMAK) and Austin–Rickett (AR) approaches. The kinetic parameters, the reaction constant n, rate constant k = k(T), and apparent activation energy Q were evaluated for isothermal transformations below and above the martensite-start temperature M S  = 548 K (275 °C), which was determined experimentally. The formation of strain-induced martensite, which starts to accompany the bainite transformation at just above M S , increases the rate of transformation and decreases the apparent activation energy of austenite decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This term is in current use within the metallurgical community; it refers to a structure that is similar to true bainite, but which contains no carbides.

References

  1. H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 411–20.

    CAS  Google Scholar 

  2. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–57.

    Article  CAS  Google Scholar 

  3. O.N. Mohanaty and A.N. Bhagat: Mat.-wiss. Werkstofftech., 2003, vol. 34, pp. 96–101.

    Article  Google Scholar 

  4. S.V. Radcliffe and E.C. Rollason: J. Iron Steel Inst., 1959, vol. 191, pp. 56–65.

    CAS  Google Scholar 

  5. P.W. Brown and D. Mack: Metall. Trans., 1973, vol. 4, pp. 2639–43.

    Article  CAS  Google Scholar 

  6. O. Schaaber: Trans. AIME, 1955, vol. 203, pp. 559–60.

    Google Scholar 

  7. R.T. Howard and M. Cohen: Trans. AIME, 1949, vol. 176, pp. 384–97.

    Google Scholar 

  8. M.F. Smith, G.R. Speich, and M. Cohen: Trans. TMS AIME, 1959, vol. 215, pp. 528–30.

    CAS  Google Scholar 

  9. N.F. Kennon and R.T. Edwards: J. Aust. Inst. Met., 1970, vol. 15, pp. 195–200.

    CAS  Google Scholar 

  10. T.Z. Wozniak: Mater. Charact., 2008, vol. 59, pp. 708–16.

    Article  CAS  Google Scholar 

  11. M. Oka and H. Okamoto: Metall. Trans. A, 1985, vol. 19A, pp. 447–52.

    Google Scholar 

  12. L.C. Chang: Mater. Sci. Eng., 2004, vol. A368, pp. 175–82.

    CAS  Google Scholar 

  13. G.R. Purdy and M. Hillert: Acta Metall., 1984, vol. 32, pp. 823–28.

    Article  CAS  Google Scholar 

  14. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  15. G.R. Speich and M. Cohen: Trans. TMS-AIME, 1960, vol. 218, pp. 1050–59.

    CAS  Google Scholar 

  16. M.J. Hawkins and J. Barford: Scripta Mater., 1970, vol. 4, pp. 583–88.

    Article  CAS  Google Scholar 

  17. H.K.D.H. Bhadeshia: J. Phys., 1982, Coll. C4, Suppl. 12, pp. C4-443–C4-448.

  18. M. Umemo, K.H. Uchi, and I. Tamura: Trans. ISIJ, 1982, vol. 22, pp. 854–61.

    Article  Google Scholar 

  19. D. Quidort and Y.J.M. Brechet: ISIJ Int., 2002, vol. 42 (9), pp. 1010–17.

    Article  CAS  Google Scholar 

  20. J.W. Elmer, T.A. Palmer, S.S. Babu, W. Zhang, and T. DebRoy: Weld. J., 2004, Sept., pp. 244–53.

  21. S.M.C. van Bohemen, M.J. Santofimia, and J. Sietsma: Scripta Mater., 2008, vol. 58, pp. 488–91.

  22. N.V. Luzginova, L. Zhao, and J. Sietsma: Mater. Sci. Eng., 2008, vols. A481–482, pp. 766–69.

    Google Scholar 

  23. M. Niewczas, Z.S. Basinski, S.J. Basinski, and J.D. Embury: Phil. Mag., 2001, vol. 81A, pp. 1121–38.

    Google Scholar 

  24. General Area Detector Diffraction System (GADDS), Version 4.0, User’s Manual, Bruker AXS Inc., Madison, WI, 1999.

  25. K.W. Andrews: JISI, 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  26. D.J. Dyson and B. Holmes: JISI, 1970, vol. 208, pp. 469–74.

    CAS  Google Scholar 

  27. I.S. Servi and D. Turnbull: Acta Metall., 1966, vol. 14, pp. 161–69.

    Article  CAS  Google Scholar 

  28. E.-S. Lee and Y.G. Kim: Acta Metall. Mater., 1990, vol. 38, pp. 1669–76.

    Article  CAS  Google Scholar 

  29. W.A. Johnson and K.E. Mehl: Trans. Am. Inst. Min. Met. Enf., 1939, vol. 195, pp. 416–58.

    Google Scholar 

  30. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  31. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  32. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  33. A.N. Kolgomorov: Izv. Akad. Nauk SSSR, Ser. Mater., 1937, vol. 1, pp. 355–59.

    Google Scholar 

  34. J.B. Austin and R.L. Rickett: Trans. Am. Inst. Eng., 1939, vol. 135, pp. 396–415.

    Google Scholar 

  35. G.B. Olson and M. Cohen: J. Less-Common Met., 1972, vol. 28, pp. 107–18.

    Article  CAS  Google Scholar 

  36. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, pp. 3361–70.

    Article  CAS  Google Scholar 

  37. E. Swallow and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1996, vol. 12, pp. 121–25.

    CAS  Google Scholar 

  38. J.W. Christian: Theory of Phase Transformation in Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 2004, pp. 529–46.

    Google Scholar 

  39. M. Hillert: Acta Metall., 1959, vol. 7, pp. 653–58.

    Article  CAS  Google Scholar 

  40. G.V. Kurdjumov and O.P. Maksimova: Dokl. Akad. Nauk SSSR, 1948, vol. 61, pp. 83–93.

    Google Scholar 

  41. G.V. Kurdjumov and O.P. Maksimova: Dokl. Akad. Nauk SSSR, 1950, vol. 73, pp. 95–98.

    Google Scholar 

  42. S.R. Pati and M. Cohen: Acta Metall., 1971, vol. 19, pp. 1327–32.

    Article  CAS  Google Scholar 

  43. C.T. Peters, P. Bolton, and A.P. Miodownik: Acta Metall., 1972, vol. 20, pp. 881–86.

    Article  CAS  Google Scholar 

  44. S.K. Gupta and V. Raghavan: Acta Metall., 1975, vol. 23, pp. 1239–45.

    Article  CAS  Google Scholar 

  45. C. Wells, W. Barz, and R.F. Mehl: Trans. AIME, 1950, vol. 188, pp. 553–60.

    CAS  Google Scholar 

  46. H. Sueyoshi and K. Suenaga: J. Jpn. Inst. Met., 1987, vol. 51, pp. 518–24.

    CAS  Google Scholar 

  47. U. Bohnenkamp, R. Sandstrom, and G. Grimvall: J. Appl. Phys., 2002, vol. 92, pp. 4402–07.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada. The authors are grateful to Drs. M. Niewczas and J. Britten for access to the ER equipment and for the XRD measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Yakubtsov.

Additional information

Manuscript submitted January 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubtsov, I.A., Purdy, G.R. Analyses of Transformation Kinetics of Carbide-Free Bainite Above and Below the Athermal Martensite-Start Temperature. Metall Mater Trans A 43, 437–446 (2012). https://doi.org/10.1007/s11661-011-0911-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0911-9

Keywords

Navigation