Skip to main content
Log in

Evolution of Microstructure and Texture During Hot Compression of a Ni-Fe-Cr Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Superalloys are being employed in more extreme conditions requiring higher strength, which requires producers to forge products to finer grain sizes with less grain size variability. To assess grain size, crystallographic texture, and substructure as a function of forging conditions, frictionless uniaxial compression testing characteristic of hot working was performed on INCOLOY 945 (Special Metals Corporation, Huntington, WV), which is a newly developed hybrid of alloys 718 and 925, over a range of temperatures and strain rates. The microstructure and texture were investigated comprehensively using light optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into microstructure evolution mechanisms. Dynamic recrystallization, nucleated by grain/twin boundary bulging with occasional subgrain rotation, was found to be a dominant mechanism for grain refinement in INCOLOY 945. At higher strain rates, static recrystallization occurred by grain boundary migration. During deformation, duplex slip along {111} planes occurred until a stable 〈110〉 fiber compression texture was established. Recrystallization textures were mostly random but shifted toward the compression texture with subsequent deformation. An exception occurred at 1423 K (1150 °C) and 0.001 seconds−1, the condition with the largest fraction of recrystallized grains, where a 〈100〉 fiber texture developed, which may be indicative of preferential growth of specific grain orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. T. Sakai and J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.

    Article  CAS  Google Scholar 

  2. M.C. Mataya, M.L. Robinson, D. Chang, M.J. Weis, G.R. Edwards, and D.K. Matlock: 29 th Mechanic. Working and Steel Process. Conf. Proceedings, TMS, Warrendale, PA, 1987, vol. 25, pp. 235–48.

  3. H. McQueen and J. Jonas: Treatise Mater. Sci. Technol., 1975, vol. 6, pp. 393-493.

    CAS  Google Scholar 

  4. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd., Kidlington, Oxford, UK, 2004, pp. 251-63.

    Google Scholar 

  5. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev: Acta Mater., 2010, no. 10, vol. 58, pp. 3624-32.

    Article  CAS  Google Scholar 

  6. I. Shimizu: J. Struct. Geol., 2008, vol. 30, pp. 899-917.

    Article  Google Scholar 

  7. A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng., A, 1998, vol. 255, pp. 139-47.

    Article  Google Scholar 

  8. T. Sakai and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251-57.

    CAS  Google Scholar 

  9. J.K. Solberg, H.J. McQueen, N. Ryum, and E. Nes: Philos. Mag., A, 1989, vol. 60, p. 447.

    Article  CAS  Google Scholar 

  10. G. Gottstein and U. Kocks: Acta Metall., 1983, vol. 31, pp. 175-88.

    Article  CAS  Google Scholar 

  11. U.F. Kocks, C.N. Tomé, H. Wenk, and H. Mecking: Texture and Anisotropy, Cambridge University Press, Cambridge, UK, 2000, pp. 181-225.

    Google Scholar 

  12. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Scripta Mater., 1999, vol. 42, pp. 17-23.

    Article  Google Scholar 

  13. P.J. Goodhew, J. Humphreys, and R. Beanland: Electron Microscopy and Analysis, 3rd ed., Taylor & Francis, New York, NY, 2000, pp. 122-69.

    Google Scholar 

  14. S. Mannan: 7 th International Symposium on Superalloys and Derivatives, TMS, Pittsburgh, PA, 2010, pp. 629-43.

    Google Scholar 

  15. Y. Wang, W. Shao, L. Zhen, L. Yang, and X. Zhang, Mater. Sci. Eng. A, 2008, vol. 497, pp. 479-86.

    Article  Google Scholar 

  16. S.P. Coryell, K.O. Findley, and M.C. Mataya: 2010 TMS Meeting and Exhibition Proceedings, Seattle, WA, 2010, pp. 291–98.

  17. S.P. Coryell: Master’s Thesis, Colorado School of Mines, Golden, CO, 2010.

  18. T. Sakai: J. Mater. Process. Technol., 1995, vol. 53, pp. 349-61.

    Article  Google Scholar 

  19. M. Hasegawa, M. Yamamoto, and H. Fukutomi: Acta Mater., 2003, vol. 51, pp. 3939-50.

    Article  CAS  Google Scholar 

  20. M. Frommert and G. Gottstein: Mater. Sci. Eng., A, 2009, vol. 506, pp. 101-10.

    Article  Google Scholar 

  21. N. Tsuji, H. Yagi, Y. Matsubara, and Y. Saito: Ottawa, Canada, unpublished research, 2000.

  22. B. Pratt, S. Kulkarni, D.P. Pope, C.D. Graham, and G. Noel: Metall. Trans. A, 1977, vol. 8A, pp. 1799-1804.

    CAS  Google Scholar 

  23. P.A. Beck: Acta Metall., 1953, vol. 1, pp. 230-34.

    Google Scholar 

  24. A. Merlini and P. Beck: Acta Metall., 1953, vol. 1, pp. 598-606.

    Article  CAS  Google Scholar 

  25. H. Yoshida, B. Liebmann, and K. Lücke: Acta Metall., 1959, vol. 7, pp. 51-56.

    Article  CAS  Google Scholar 

  26. R.E. Smallman and R.J. Bishop: Modern Physical Metallurgy and Materials Engineering, 6th ed., Butterworth-Heinemann, Jordon Hill, Oxford, UK, 1999, pp. 232-45.

    Google Scholar 

  27. C. Barrett, C. Graham Jr., and J. Lommel: Acta Metall., 1959, vol. 7, pp. 699-700.

    Article  Google Scholar 

  28. W. Hosford: Mechanical Behavior of Materials, Taylor & Francis Group, Boca Raton, FL, 2005, pp. 131-33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Findley.

Additional information

Manuscript submitted December 21, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coryell, S.P., Findley, K.O., Mataya, M.C. et al. Evolution of Microstructure and Texture During Hot Compression of a Ni-Fe-Cr Superalloy. Metall Mater Trans A 43, 633–649 (2012). https://doi.org/10.1007/s11661-011-0889-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0889-3

Keywords

Navigation