Skip to main content
Log in

Deformation-Induced Grain Refinement and Amorphization in Ti-10V-2Fe-3Al Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution and grain refinement mechanisms of a Ti-10V-2Fe-3Al alloy, β-solution quenched and cold forged (CF) to strains of 0.1, 0.35, and 1.2 have been investigated using optical microscopy (OM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The results showed that the stress-induced martensitic transformation became a predominant deformation mode in the metastable Ti-10V-2Fe-3Al alloy during cold forging. These martensites α″ repeatedly divided the original β parent phase into a large number of micron-sized blocks when the forging strain was 0.1. Shear bands were observed to traverse α″/β lamellae and resulted in a significant grain refinement of the β phase, as the forging strain increased to 0.35. The degree of grain refinement inside shear bands was higher than the outside. Nanocrystalline and amorphous structures were produced in local areas of the original β phase, when the forging strain rose to 1.2. This dramatic grain refinement in the metastable Ti-10V-2Fe-3Al alloy could be attributed to the stress-induced martensitic transformation promoting the initiation and growth of shear bands across α″/β lamellae. More dislocations were produced and accumulated inside grains to accommodate plastic deformation. The crystal structure was collapsed and an amorphous structure was formed as soon as the dislocation density was accumulated to a critical value of 1014/cm2. Moreover, some of the reverse martensitic phase transformation, α″→β, was observed to contribute to grain refinement of Ti-10V-2Fe-3Al alloy as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Lu and J. Lu: Mater. Sci. Eng. A, 2004, vols. 375-7, pp. 38–45.

  2. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu: Acta Mater., 2002, vol. 50, pp. 4603-16.

    Article  CAS  Google Scholar 

  3. K.Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu: Acta Mater., 2006, vol. 54, pp. 5281-91.

    Article  CAS  Google Scholar 

  4. H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975-82.

    Article  CAS  Google Scholar 

  5. W. Xu, K.B. Kim, J. Das, M. Calin, B. Rellinghaus, and J. Eckert: Appl. Phys. Lett., 2006, vol. 89, p. 031906.

    Article  Google Scholar 

  6. W. Xu, K.B. Kim, J. Das, M. Calin, J. Eckert: Scripta Mater., 2006, vol. 54, pp. 1943-48.

    Article  CAS  Google Scholar 

  7. W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia: Scripta Mater., 2009, vol. 60, pp. 1012-15.

    Article  CAS  Google Scholar 

  8. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu: Acta Mater., 2003, vol. 51, pp. 1871-81.

    Article  CAS  Google Scholar 

  9. X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, and K. Lu: Acta Mater., 2005, vol. 53, pp. 681-91.

    Article  CAS  Google Scholar 

  10. N.R. Tao and K. Lu: Scripta Mater., 2009, vol. 60, pp. 1039-43.

    Article  CAS  Google Scholar 

  11. Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol.56, pp. 230-41.

    Article  CAS  Google Scholar 

  12. G.H. Xiao, N.R. Tao, and K. Lu: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 13–21.

  13. A.W. Weeber and H. Bakker: Phys. B, 1988, vol. 153, pp. 93-135.

    Article  CAS  Google Scholar 

  14. Y.L. Hao, S.J. Li, B.B. Sun, M.L. Sui, and R. Yang: Phys. Rev. Lett., 2007, vol. 98, p. 216405.

    Article  CAS  Google Scholar 

  15. J. Koike, D.M. Parkin, and M. Nastasi: J. Mater. Res., 1990, vol. 5, pp. 1414-18.

    Article  CAS  Google Scholar 

  16. L.E. Rehn, P.R. Okamoto, J. Pearson, R. Bhadra, and M. Grimsditch: Phys. Rev. Lett., 2007, vol. 98, pp. 2987-90.

    Google Scholar 

  17. M.W. Chen, J.W. Mccauley, and K.J. Hemker: Science, 2003, vol. 299, pp. 1563-66.

    Article  CAS  Google Scholar 

  18. G.T. Terlinde, T.W. Duerig, and J.C. Williams: Metall. Trans. A, 1983, vol. 14A, pp. 2101-15.

    CAS  Google Scholar 

  19. T.W. Duerig, J. Albercht, D. Richter, and P. Fischer: Acta Metall., 1982, vol. 30, pp. 2161-72.

    Article  CAS  Google Scholar 

  20. Q.Y. Sun, S.J. Song, R.H. Zhu, and H.C. Gu: J. Mater. Sci., 2002, vol. 37, pp. 2543-47.

    Article  CAS  Google Scholar 

  21. R. Valiev: Nature Mater., 2004, vol. 3, pp. 511-16.

    Article  CAS  Google Scholar 

  22. X. Wu, N. Tao, Y. Hong, J. Lu, and K. Lu: J. Phys. D: Appl. Phys., 2005, vol. 38, pp. 4140-43.

    Article  CAS  Google Scholar 

  23. X.L. Wu and E. Ma: J. Mater. Res., 2007, vol. 22, pp. 2241-53.

    Article  CAS  Google Scholar 

  24. T. Grosdidier, C. Roubaud, M.J. Philippe, and Y. Combres: Scripta Mater., 1997, vol. 36, pp. 21-28.

    Article  CAS  Google Scholar 

  25. P.J. Bania: JOM, 1994, vol. 46, pp. 16-19.

    CAS  Google Scholar 

  26. D. Doraiswamy, S. Ankem: Acta Mater., 2003, vol. 51, pp. 1607-19.

    Article  CAS  Google Scholar 

  27. W. Chen, Z.Y. Song, Q.Y. Sun, L. Xiao, W.B. She, J. Sun, and P. Ge: J. Solid Mech. Mater. Eng., 2010, vol. 4, pp. 1296-1305.

    Article  Google Scholar 

  28. S.E. Schoenfeld, S. Ahzi, and R.J. Asaro: J. Mech. Phys. Solids, 1995, vol. 43, pp. 415-46.

    Article  CAS  Google Scholar 

  29. A.G. Considère: Ann. Ponts Chaussees, 1885, vol. 9, pp. 574-95.

    Google Scholar 

  30. G. Lutjering, J.C. Williams: Titanium, 2nd ed., Springer-Verlag, Berlin, Germany, 2003, pp. 74.

    Google Scholar 

  31. A. Mishra, B.K. Kad, F. Gregori, and M.A. Meyers: Acta Mater., 2007, vol. 55, pp. 12-28.

    Google Scholar 

  32. D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495-3509.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the 973 Program of China under Grants 2007CB613804 and 2010CB631003 for financial support. We are also appreciative of the financial support from the Natural Science Foundation of China under Grants 50831004 and 51071118. The authors would also like to thank Shengwu Guo for help with TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xiao.

Additional information

Manuscript submitted January 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Sun, Q., Xiao, L. et al. Deformation-Induced Grain Refinement and Amorphization in Ti-10V-2Fe-3Al Alloy. Metall Mater Trans A 43, 316–326 (2012). https://doi.org/10.1007/s11661-011-0856-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0856-z

Keywords

Navigation