Skip to main content
Log in

Role of Localized Deformation in Irradiation-Assisted Stress Corrosion Cracking Initiation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Intergranular cracking of irradiated austenitic alloys depended on localized grain boundary stress and deformation in both high-temperature aqueous and argon environments. Tensile specimens were irradiated with protons to doses of 1 to 7 dpa and then strained in high-temperature argon, simulated boiling water reactor normal water chemistry, and supercritical water environments. Quantitative measurements confirmed that the initiation of intergranular cracks was promoted by (1) the formation of coarse dislocation channels, (2) discontinuous slip across grain boundaries, (3) a high inclination of the grain boundary to the tensile axis, and (4) low-deformation propensity of grains as characterized by their Schmid and Taylor factors. The first two correlations, as well as the formation of intergranular cracks at the precise locations of dislocation channel–grain boundary intersections are evidence that localized deformation drives crack initiation. The latter two correlations are evidence that intergranular cracking is promoted at grain boundaries experiencing elevated levels of normal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, and J.L. Nelson: J. Nucl. Mater., 1999, vol. 274, pp. 299-314.

    Article  CAS  Google Scholar 

  2. Z. Jiao, J.T. Busby, and G.S. Was: J. Nucl. Mater., 2007, vol. 361, pp. 218-27.

    Article  CAS  Google Scholar 

  3. G.S. Was, B. Alexandreanu, and J. Busby: Key Eng. Mater., 2004, vols. 261-3, pp. 885–901.

  4. K. Fukuya, N. Nishioka, K. Fujii, T. Miura, and T. Torimaru: J. Nucl. Mater., in press.

  5. M.D. McMurtrey, G.S. Was, L. Patrick, and D. Farkas: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3730-40.

    Article  Google Scholar 

  6. E.A. West and G.S. Was: J. Nucl. Mater., 2011, vol. 408, pp. 142-52.

    Article  CAS  Google Scholar 

  7. E.A. West: Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, 2010.

  8. E.A. West, Z. Jiao, and G.S. Was: Proc. 14 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, Virginia Beach, VA, 2009.

  9. E.A. West and G.S. Was: Unpublished research, University of Michigan, Ann Arbor, MI, 2011.

  10. Z. Jiao and G.S. Was: J. Nucl. Mater., 2011, vol. 408, pp. 246-56.

    Article  CAS  Google Scholar 

  11. Z. Jiao, J.T. Busby, R. Obata, and G.S. Was: Proc. 12 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, TMS, Salt Lake City, UT, 2005, pp. 379–88.

  12. S.I. Wright and D.P. Field: Mater. Sci. Eng. A, 1998, vol. 257, pp. 165-70.

    Article  Google Scholar 

  13. E.M. Lehockey, A.M. Brennenstuhl, S. Pagan, M.A. Clark, and V. Perovic: Proc. 13 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, Canadian Nuclear Society, Whistler, BC, Canada, 2007, pp. 465–98.

  14. B. Alexandreanu, O.K. Chopra, and W.J. Shack: Proc. 12 th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, TMS, Salt Lake City, UT, 2005, pp. 579–88.

  15. B.S. Rho, H.U. Hong, and S.W. Nam: Scripta Mater., 2000, vol. 43, pp. 167-73.

    Article  Google Scholar 

  16. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill Book Co., New York, NY, 1986.

    Google Scholar 

  17. I.M. Robertson, T.C. Lee, and H.K. Birnbaum: Ultramicroscopy, 1992, vol. 40, pp. 330-38.

    Article  Google Scholar 

  18. T. Watanabe: Mater. Sci. Eng. A, 1994, vol. 176, pp. 39-49.

    Article  CAS  Google Scholar 

  19. S. Tsurekawa, T. Tanaka, and H. Yoshinaga: Mater. Sci. Eng. A, 1994, vol. 176, pp. 341-48.

    Article  CAS  Google Scholar 

  20. H. Kurishita and H. Yoshinaga: Mater. Forum, 1989, vol. 15, pp. 161-73.

    Google Scholar 

  21. J.B. Brosse, R. Fillit, and M. Biscondi: Scripta Metall., 1981, vol. 15, pp. 619-23.

    Article  CAS  Google Scholar 

  22. A.N. Stroh: Adv. Phys., 1957, vol. 6, pp. 418-65.

    Article  Google Scholar 

  23. A.N. Stroh: Proc. Roy. Soc. Lond., 1954, vol. 223, pp. 404-14.

    Article  Google Scholar 

  24. M. Kikuchi, K. Shiozawa, and J.R. Weertman: Acta Metall., 1981, vol. 29, pp. 1747-58.

    Article  CAS  Google Scholar 

  25. J. Weertman: J. Appl. Phys., 1986, vol. 60, pp. 1877-87.

    Article  CAS  Google Scholar 

  26. D.J. Dingley and R.C. Pond: Acta Metall., 1979, vol. 27, pp. 667-82.

    Article  CAS  Google Scholar 

  27. T.C. Lee, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1992, vol. 40, pp. 2569-79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Alexander Flick for his assistance conducting the CERT tests in the Irradiated Materials Testing Laboratory at the University of Michigan. The staff of the Michigan Ion Beam Laboratory, Ovidiu Toader and Fabian Naab, are also gratefully acknowledged for their assistance in performing the proton irradiations. Support of the EBSD analysis was provided by the University of Michigan Electron Microbeam Analysis Laboratory staff. This research was supported by NERI award #DE-FC07-05ID14664 for Project Number 05-151, the Department of Energy, Office of Basic Energy Sciences, under grant DE-FG02-08ER46525 and the Electric Power Research Institute, under agreements EP-P35203/C15971 and EP-P20763/C10134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine A. West.

Additional information

Manuscript submitted March 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, E.A., McMurtrey, M.D., Jiao, Z. et al. Role of Localized Deformation in Irradiation-Assisted Stress Corrosion Cracking Initiation. Metall Mater Trans A 43, 136–146 (2012). https://doi.org/10.1007/s11661-011-0826-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0826-5

Keywords

Navigation