Skip to main content

Advertisement

Log in

On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The conventional continuous hot-dip galvanizing (GI) and galvannealing (GA) processes can be applied to untransformed austenite to produce Zn and Zn-alloy coated low-carbon ultra-high-strength martensitic steel provided specific alloying additions are made. The most suitable austenite decomposition behavior results from the combined addition of boron, Cr, and Mo, which results in a pronounced transformation bay during isothermal transformation. The occurrence of this transformation bay implies a considerable retardation of the austenite decomposition in the temperature range below the bay, which is close to the stages in the continuous galvanizing line (CGL) thermal cycle related to the GI and GA processes. After the GI and GA processes, a small amount of granular bainite, which consists of bainitic ferrite and discrete islands of martensite/austenite (M/A) constituents embedded in martensite matrix, is present in the microstructure. The ultimate tensile strength (UTS) of the steel after the GI and GA cycle was over 1300 MPa, and the stress-strain curve was continuous without any yielding phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.C. De Cooman, J.G. Speer, I.Y. Pyshmintsev, and N. Yoshinaga: Materials Design—The Key to Modern Steel Products, GRIPS Media GmbH, Bad Harzburg, 2007, pp. 137–204.

  2. J.M. Chilton and P.M. Kelly: Acta Metall., 1968, vol. 16, pp. 637–56.

    Article  CAS  Google Scholar 

  3. H.K.D.H. Bhadeshia: Bainite in Steels: Transformation, Microstructure and Properties, IOM Communications Ltd., London, 2001, pp. 117–224.

  4. S. Khare, K. Lee, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 922–28.

    Article  CAS  Google Scholar 

  5. R. Davies: Metall. Trans. A, 1979, vol. 10A, pp. 113–18.

    CAS  Google Scholar 

  6. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

  7. G. Melloy, P. Summon, and P. Podgursky: Metall. Trans., 1973, vol. 4, pp. 2279–89.

    Article  CAS  Google Scholar 

  8. T. Hara, H. Asahi, R. Uemori, and H. Tamehiro: ISIJ Int., 2004, vol. 44, pp. 1431–40.

    Article  CAS  Google Scholar 

  9. K. Taylor and S. Hansen: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1697–1708.

    CAS  Google Scholar 

  10. X.M. Wang and X.L. He: ISIJ Int., 2002, vol. 42, pp. S38–S46.

    Article  CAS  Google Scholar 

  11. W. Cias and D. Doane: Metall. Trans., 1973, vol. 4, pp. 2257–66.

    Article  CAS  Google Scholar 

  12. W. Reynolds, F. Li, C. Shui, and H. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1433–63.

    CAS  Google Scholar 

  13. R. Grange: Metall. Trans., 1973, vol. 4, pp. 2231–44.

    Article  CAS  Google Scholar 

  14. T. Song: Master’s Thesis, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang, 2009, pp. 81–90.

  15. T. Maki: Proc. 1st Int. Symp. on Steel Science (ISSS 2007), Kyoto, Japan, 2007, pp. 1–10.

  16. S.W. Thompson, D.J. Colvin, and G. Krauss: Scripta Metall., 1988, vol. 22, pp. 1069–74.

    Article  CAS  Google Scholar 

  17. C.A. Apple, R.N. Caron, and G. Krauss: Metall. Trans., 1974, vol. 5, pp. 593–99.

    Article  CAS  Google Scholar 

  18. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  CAS  Google Scholar 

  19. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    Article  CAS  Google Scholar 

  20. M. Watanabe and C.M. Wayman: Metall. Trans., 1971, vol. 2, pp. 2221–27.

    Article  CAS  Google Scholar 

  21. L. Bojarski and T. Bold: Acta Metall., 1974, vol. 22, pp. 1223–34.

    Article  CAS  Google Scholar 

  22. M.G.H. Wells: Acta Metall., 1964, vol. 12, pp. 389–99.

    Article  CAS  Google Scholar 

  23. M.X. Zhang and P.M. Kelly: Acta Mater., 1998, vol. 46, pp. 4081–91.

    Article  CAS  Google Scholar 

  24. W.C. Leslie, R.M. Fisher, and N. Sen: Acta Metall., 1959, vol. 7, pp. 632–44.

    Article  CAS  Google Scholar 

  25. D.N. Shackleton and P.M. Kelly: Acta Metall., 1967, vol. 15, pp. 979–92.

    Article  CAS  Google Scholar 

  26. J. Wu, P.J. Wray, C.I. Garcia, M. Hua, and A.J. Deardo: ISIJ Int., 2005, vol. 45, pp. 254–62.

    Article  CAS  Google Scholar 

  27. J.C. Shyne and W.D. Nix: Acta Metall., 1965, vol. 13, pp. 869–70.

    Article  CAS  Google Scholar 

  28. A. Shibata, S. Morito, T. Furuhara, and T. Maki: Scripta Mater., 2005, vol. 53, pp. 597–602.

    Article  CAS  Google Scholar 

  29. M. Takahashi and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1990, vol. 6, pp. 592–603.

    CAS  Google Scholar 

  30. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1996, vol. 12, pp. 233–36.

    CAS  Google Scholar 

  31. E. Keehan, L. Karlsson, H.K.D.H. Bhadeshia, and M. Thuvander: Mater. Sci. Technol., 2008, vol. 24, pp. 1183–88.

    Article  CAS  Google Scholar 

  32. Y. Ohmori, Y.C. Jung, K. Nakai, and H. Shioiri: Acta Mater., 2001, vol. 49, pp. 3149–62.

    Article  CAS  Google Scholar 

  33. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  34. H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21A, pp. 877–88.

    CAS  Google Scholar 

  35. P.C.M. Rodrigues, E.V. Pereloma, and D.B. Santos: Mater. Sci. Eng. A, 2000, vol. 283, pp. 136–43.

    Article  Google Scholar 

  36. S.-C. Wang and J.-R. Yang: Mater. Sci. Eng. A, 1992, vol. 154, pp. 43–49.

    Article  Google Scholar 

  37. V. Biss and R. Cryderman: Metall. Trans., 1971, vol. 2, pp. 2267–76.

    Article  CAS  Google Scholar 

  38. M.E. Bush and P.M. Kelly: Acta Metall., 1971, vol. 19, pp. 1363–71.

    Article  CAS  Google Scholar 

  39. J.L. Lee, M.H. Hon, and G.H. Cheng: Scripta Metall., 1987, vol. 21, pp. 293–98.

    Article  CAS  Google Scholar 

  40. S. Liu and G. Zhang: Metall. Trans. A, 1990, vol. 21A, pp. 1509–15.

    CAS  Google Scholar 

  41. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 21A, pp. 1493–1507.

    CAS  Google Scholar 

  42. M.X. Zhang and P.M. Kelly: Scripta Mater., 2002, vol. 47, pp. 749–55.

    Article  CAS  Google Scholar 

  43. Y. Tomita and K. Okabayashi: Metall. Mater. A, 1985, vol. 16A, pp. 73–82.

    Article  CAS  Google Scholar 

  44. C.H. Young and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1994, vol. 10, pp. 209–14.

    CAS  Google Scholar 

  45. W. Jandeska and J. Morral: Metall. Trans., 1972, vol. 3, pp. 2933–37.

    Article  CAS  Google Scholar 

  46. T.B. Cameron and J.E. Morral: Boron in Steel, TMS-AIME, Warrendale, PA, 1979, pp. 61–79.

    Google Scholar 

  47. E.J. Shin, B.S. Sung, H.M. Park, D.J. Mun, and G.H. Lee: Proc. 44th Symp. on Steel Technology, Daejeon, Republic of Korea, 2008, pp. 117–39.

    Google Scholar 

  48. S. Khare, K. Lee, and H.K.D.H. Bhadeshia: Int. J. Mater. Res., 2009, vol. 100, pp. 1513–20.

    Article  CAS  Google Scholar 

  49. C. Mesplont, S. Vandeputte, and B.C. De Cooman: Z. Metallkd., 2002, vol. 93, pp. 1108–18.

  50. C.A. Siebert, D.V. Doane, and D.H. Breen: The Hardenability of Steels—Concepts, Metallurgical Influence and Industrial Applications, ASM, Metals Park, OH, 1977, pp. 72–129.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. de Cooman.

Additional information

Manuscript submitted March 15, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, T., Kwak, J. & de Cooman, B.C. On the Processing of Martensitic Steels in Continuous Galvanizing Lines: Part II. Metall Mater Trans A 43, 263–280 (2012). https://doi.org/10.1007/s11661-011-0791-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0791-z

Keywords

Navigation