Skip to main content

Advertisement

Log in

Microstructure and Impression Creep Characteristics of Cast Mg-5Sn-xBi Magnesium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and creep behavior of a cast Mg-5Sn alloy with 1, 2, and 3 wt pct Bi additions were studied by impression tests in the temperature range 423 K to 523 K (150 °C to 250 °C) under punching stresses in the range 125 to 475 MPa for dwell times up to 3600 seconds. The alloy containing 3 wt pct Bi showed the lowest creep rates and, thus, the highest creep resistance among all materials tested. This is attributed to the favorable formation of the more thermally stable Mg3Bi2 intermetallic compound, the reduction in the volume fraction of the less stable Mg2Sn phase, and the dissolution of Bi in the remaining Mg2Sn particles. These particles strengthen both the matrix and grain boundaries during creep deformation of the investigated system. The creep behavior of the Mg-5Sn alloy can be divided into the low- and high-stress regimes, with the respective average stress exponents of 5.5 and 10.5 and activation energies of 98.3 and 163.5 kJ mol−1. This is in contrast to the creep behavior of the Bi-containing alloys, which can be expressed by a single linear relationship over the whole stress and temperature ranges studied, yielding stress exponents in the range 7 to 8 and activation energies of 101.0 to 107.0 kJ mol−1. Based on the obtained stress exponents and activation energies, it is proposed that the dominant creep mechanism in Mg-5Sn is pipe-diffusion controlled dislocation viscous glide the low-stress regime and dislocation climb creep with back stress in the high-stress regime. For the Mg-5Sn-xBi alloys, however, the controlling creep mechanism is dislocation climb with an additional particle strengthening effect, which is characterized by the higher stress exponent of 7 to 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. MAGREX 36 is a trademark of Foseco, Staffordshire, United Kingdom.

References

  1. A.A. Luo: Int. Mater. Rev., 2004, vol. 49, pp. 13-30.

    Article  CAS  Google Scholar 

  2. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 116-27.

    Article  CAS  Google Scholar 

  3. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, 40A, pp. 2190-201.

    Article  CAS  Google Scholar 

  4. C.L. Mendis, C.J. Bettles, M.A. Gibson, and C.R. Hutchinson: Mater. Sci. Eng. A, 2006, vols. A435-436, pp. 163-71.

    Google Scholar 

  5. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu: J. Alloys Compd., 2007, vol. 440, pp. 122-26.

    Article  CAS  Google Scholar 

  6. S. Wei, Y. Chen, Y. Tang, H. Liu, S. Xiao, G. Niu, X. Zhang, and Y. Zhao: Mater. Sci. Eng. A, 2008, vol. A492, pp. 20-23.

    CAS  Google Scholar 

  7. G. Nayyeri and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. A527, pp. 4613-18.

    CAS  Google Scholar 

  8. N. Hort, Y. Huang, T.A. Leil, P. Maier, and K.U. Kainer: Adv. Eng. Mater., 2006, vol. 8, pp. 359-64.

    Article  CAS  Google Scholar 

  9. M. Zhang, W.Z. Zheng, G.Z. Guo, and K. Yu: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1428-32.

    Article  Google Scholar 

  10. S. Wei, Y. Chen, Y. Tang, X. Zhang, M. Liu, S. Xiao, and Y. Zhao: Mater. Sci. Eng. A, 2009, A508, pp. 59-63.

    CAS  Google Scholar 

  11. H. Liu, Y. Chen, Y. Tang, Y. Tang, S. Wei, and G. Niu: Mater. Sci. Eng. A, 2007, A464, pp. 124-28.

    CAS  Google Scholar 

  12. G. Nayyeri and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. A527, pp. 669-76.

    CAS  Google Scholar 

  13. G. Nayyeri and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. A527, pp. 2087-98.

    CAS  Google Scholar 

  14. G. Nayyeri and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. A527, pp. 5353-59.

    CAS  Google Scholar 

  15. Y. Guangyin, S. Yangshan, and D. Wenjiang: Mater. Sci. Eng. A, 2001, vol. A308, pp. 38-44.

    Google Scholar 

  16. E.J. Guo, B.X. Ma, and L.P. Wang: J. Mater. Process. Tech., 2008, vol. 206, pp. 161-66.

    Article  CAS  Google Scholar 

  17. S.N.G. Chu and J.C.M. Li: Mater. Sci. Eng., 1979, vol. 39, pp. 1-10.

    Article  CAS  Google Scholar 

  18. L.L. Peng, F.Q. Yang, J.F. Nie, and J.C.M. Li: Mater. Sci. Eng. A, 2005, vols. A410-1, pp. 42-47.

    Google Scholar 

  19. B. Kondori and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2007-15.

    Article  CAS  Google Scholar 

  20. R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz: J. Alloys Compd., 2007, vol. 427, pp. 124-29.

    Article  CAS  Google Scholar 

  21. A.A. Nayeb-Hashemi and J.B. Clark: Alloy Phase Diagrams, ASM International, Materials Park, OH, 1988, p. 497.

  22. L.J. Slutsky and C.M. Garland: Phys. Rev., 1957, vol. 107, pp. 972-76.

    Article  CAS  Google Scholar 

  23. W. Blum, Y.J. Li, X.H. Zeng, P. Zhang, B. Von Grossmann, and C. Haberling: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1721-28.

    Article  CAS  Google Scholar 

  24. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. TMS-AIME, 1969, vol. 62, pp. 155-79.

    CAS  Google Scholar 

  25. N. Ishimatsu, Y. Terada, T. Sato, and K. Ohori: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 243-48.

    Article  CAS  Google Scholar 

  26. K. Milicka, J. Cadek, and P. Rys: Acta Metall., 1970, vol. 18, pp. 1071-81.

    Article  Google Scholar 

  27. L. Shi and D.O. Northwood: Acta Metall. Mater., 1994, vol. 42, pp. 871-77.

    Article  CAS  Google Scholar 

  28. S.S. Vagarali and T.G. Longdon: Acta Metall., 1981, vol. 29, pp. 1969-82.

    Article  CAS  Google Scholar 

  29. R. Mahmudi, A. Rezaee-Bazzaz, and H.R. Banaie-Fard: J. Alloys Compd., 2007, vol. 429, pp. 192-97.

    Article  CAS  Google Scholar 

  30. T. Reinikainen and J. Kivilahti: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 123–32.

  31. F.A. Mohamed and T.G. Langdon: Acta Metall., 1974, vol. 22, 779-88.

    Article  CAS  Google Scholar 

  32. P. Yavari and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 2181-96.

    Article  CAS  Google Scholar 

  33. M.D. Mathew, H. Yang, S. Mowa, and K.L. Murty: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 99-105.

    Article  CAS  Google Scholar 

  34. W.J. Tegart: Acta Metall., 1961, vol. 9, pp. 614-17.

    Article  CAS  Google Scholar 

  35. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 1, pp. 325-90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mahmudi.

Additional information

Manuscript submitted July 26, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyvani, M., Mahmudi, R. & Nayyeri, G. Microstructure and Impression Creep Characteristics of Cast Mg-5Sn-xBi Magnesium Alloys. Metall Mater Trans A 42, 1990–2003 (2011). https://doi.org/10.1007/s11661-010-0564-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0564-0

Keywords

Navigation