Skip to main content
Log in

Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of the Alclad layer on material flow and defect formation during friction-stir welding (FSW) of 6.5-mm-thick 2024Al-T351 alloy plates was investigated. To characterize the material flow during FSW, different cross sections of the keyhole and “stop-action weld” were made for metallographic observations. It was found that the top Alclad assembled at the shoulder/workpiece interface, thereby weakening the material flow in the shoulder-driven zone and favoring the formation of void defect at high traveling speeds. The bottom Alclad layer extended into the weld at excess material flow state, which could be avoided at balanced material flow state. A conceptual model of material flow was proposed to describe the formation of the weld. It was indicated that a perfect FSW joint of Alclad 2024Al alloy without defect could be obtained at an optimum FSW condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.Y. Jeong, O. Orringer, and G.C. Sih: Theor. Appl. Fract. Mech., 1995, vol. 22, pp. 127-37.

    Article  CAS  Google Scholar 

  2. D. Fersini and A. Pirondi: Eng. Fract. Mech., 2007, vol. 74, pp. 468-80.

    Article  Google Scholar 

  3. L. Commin, M. Dumont, J.E. Masse, and L. Barrallier: Acta Mater., 2009, vol. 57, pp. 326-34.

    Article  CAS  Google Scholar 

  4. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50R, pp. 1-78.

    Article  Google Scholar 

  5. M.A. Sutton, B. Yang, A.P. Reynolds, and R. Taylor: Mater. Sci. Eng. A., 2002, vol. 323, pp. 160-66.

    Article  Google Scholar 

  6. C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-Cottignies: Acta Mater., 2005, vol. 53, pp. 2447-58.

    Article  CAS  Google Scholar 

  7. M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J.H. Driver: Scripta Mater., 2005, vol. 52, pp. 693-97.

    Article  CAS  Google Scholar 

  8. R. Talwar, D. Bolser, R. Lederich, and J. Baumann: 4 th Int. Symp. Friction Stir Welding, Park City, UT, 2003.

    Google Scholar 

  9. A.P. Reynolds: Scripta Mater., 2008, vol. 58, pp. 338-42.

    Article  CAS  Google Scholar 

  10. K. Colligan: Weld J., 1999, vol. 78, pp. 229-37.

    Google Scholar 

  11. T.U. Seidel and A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2879-84.

    Article  CAS  Google Scholar 

  12. S.W. Xu and X.M. Deng: Acta Mater., 2008, vol. 56, pp. 1326-41.

    Article  CAS  Google Scholar 

  13. M. Guerra, C. Schmidt, J.C. McClure, L.E. Murr, and A.C. Nunes: Mater. Charact., 2003, vol. 49, pp. 95-101.

    Article  Google Scholar 

  14. H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel: Acta Mater., 2006, vol. 54, pp. 1199-1209.

    Article  CAS  Google Scholar 

  15. R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues, and P. Vilac: Mater. Sci. Eng. A, 2008, vol. 498, pp. 384-91.

    Article  Google Scholar 

  16. O. Lorrain, V. Favier, H. Zahrouni, and D. Lawrjaniec: J. Mater. Process. Tech., 2010, vol. 210, pp. 603-09.

    CAS  Google Scholar 

  17. K. Kumar and S.V. Kailas: Mater. Sci. Eng. A. 2008, vol. 485, pp. 367-74.

    Article  Google Scholar 

  18. H.W. Zhang, Z. Zhang, and J.T. Chen: J. Mater. Res., 2007, vol. 183, pp. 62-70.

    CAS  Google Scholar 

  19. H. Schmidt and J. Hattel: Proc. Symp. Friction Stir Welding Process. III, TMS, Warrendale, PA, 2005, pp. 225-32.

    Google Scholar 

  20. W.J. Arbegast: Scripta Mater., 2008, vol. 58, pp. 372-76.

    Article  CAS  Google Scholar 

  21. Z.W. Chen, T. Pasang, and Y. Qi: Mater. Sci. Eng. A, 2008, vol. 474, pp. 312-16.

    Article  Google Scholar 

  22. K. Kumar and S.V. Kailas: Mater. Sci. Eng. A, 2008, vol. 485, pp. 367-74.

    Article  Google Scholar 

  23. S. Mandal, J. Rice, and A.A. Elmustafa: J. Mater. Process. Tech., 2008, vol. 203, pp. 411-19.

    Article  CAS  Google Scholar 

  24. A. Gerlich, M. Yamamoto, and T.H. North: J. Mater. Sci., 2008, vol. 43, pp. 2-11.

    Article  CAS  Google Scholar 

  25. A. Gerlich, G. Avramovic–Cingara, and T.H. North: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2773-86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Outstanding Young Scientist Foundation of China under Grant 50525103 and the Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma.

Additional information

Manuscript submitted April 27, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Xiao, B.L., Wang, D. et al. Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy. Metall Mater Trans A 42, 1717–1726 (2011). https://doi.org/10.1007/s11661-010-0545-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0545-3

Keywords

Navigation