Skip to main content
Log in

Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article examines the reasons for the poor performance of the nanometric scale SiC (n-SiC p ) particulate-reinforced Al 7075 composites. The composites having different volume fractions of the n-SiC p were synthesized via powder metallurgy (P/M) route and were uniaxially tested at room temperature. Experimental results showed a significant drop in the hardness and tensile properties of the composites in comparison with those of the monolithic Al. Microstructural analysis via scanning electron microscopy (SEM) revealed large segregation of Mg in the vicinity of the n-SiC p and at the grain boundaries of the Al matrix, which plausibly changed both the aging kinetics and tensile behavior of the Al matrix. The segregation of Mg increased with an increase in the volume fraction of the n-SiC p in the Al matrix. No Mg segregation was found in the monolithic Al. The clustering of the n-SiC p was observed from SEM with energy dispersive X-ray analysis. SEM also revealed cracks in the n-SiC p clusters and debonding between the clusters and Al matrix, which were considered as the main mode of fracture in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.L. McDanels: Metall. Trans. A, 1985, vol. 16A, pp. 1105–15.

    ADS  CAS  Google Scholar 

  2. T.S. Srivatsan: J. Mater. Sci., 1996, vol. 12, pp. 1375–88.

    Article  ADS  Google Scholar 

  3. M. Taya and R.J. Arsenault: Metal Matrix Composites Thermomechanical Behaviour, Pergamon Press, New York, NY, 1989, pp. 2–5.

    Google Scholar 

  4. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, University Press, Cambridge, United Kingdom, 1993, p. 5.

    Book  Google Scholar 

  5. T.J.A. Doel and P. Bowen: Compos. Part A, 1996, vol. 27, pp. 655–65.

    Article  Google Scholar 

  6. A. Razaghian, D. Yu, and T. Chandra: Compos. Sci. Technol., 1998, vol. 58, pp. 293–98.

    Article  CAS  Google Scholar 

  7. A.B. Pandey, B.S. Majumdar, and D.B. Miracle: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 921–36.

    ADS  CAS  Google Scholar 

  8. Y.C. Kang: Ph.D. Thesis, National Taiwan University, Taipei, Taiwan, ROC, 2004, pp. 134–45.

  9. Z. Ren: M.E. Thesis, University of New South Wales, Sydney, Australia, 2007, p. 50.

  10. A. Ahmed, A.J. Neely, K. Shankar, and S.L.I Chan: Mater. Sci. Forum, 2007, vols. 561–565, pp. 761–64.

    Article  Google Scholar 

  11. J.K. Shang and R.O. Ritchie: Acta Metall., 1989, vol. 37, pp. 2267–78.

    Article  CAS  Google Scholar 

  12. A.N. Tiwari, V. Gopinathan, and P. Ramakrishan: Mater. Manuf. Processes, 1991, vol. 6, pp. 612–33.

    Article  Google Scholar 

  13. A. Kalkanli, S. Yilmaz: Mater. Des., 2008, vol. 29, pp. 775–80.

    CAS  Google Scholar 

  14. C.H.J. Davies: J. Mater. Process. Technol., 1996, vol. 62, pp. 225–28.

    Article  ADS  Google Scholar 

  15. L.E.G. Cambronero, E. Sanchez, J.M. Ruiz-Roman, and J.M. Ruiz-Prieto: J. Mater. Process. Technol., 2003, vols. 143–144, pp. 378–83.

    Article  CAS  Google Scholar 

  16. N.V. Ravi Kumar and E.S. Dwarakadasa: J. Mater. Sci., 1994, vol. 29, pp. 1533–39.

    Article  ADS  CAS  Google Scholar 

  17. N. Chawla and K.K. Chawla: Metal Matrix Composites, Springer, New York, NY, 2006, pp. 88–90.

    Google Scholar 

  18. F. Thummler and R. Oberacker: Introduction to Powder Metallurgy, University Press, Cambridge, United Kingdom, 1993, pp. 10–12.

    Google Scholar 

  19. T.S. Srivatsan and V.K. Vasudevan: Int. J. Fatigue, 1998, vol. 20, pp. 187–202.

    Article  CAS  Google Scholar 

  20. X.G. Ning, J. Pan, J.H. Li, K.Y. Hu, H.Q. Ye, and H. Fukunaga: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1644–47.

    Article  CAS  Google Scholar 

  21. M. Strangwood, C.A. Hippsley, and J.J. Lewandowski: Scripta Metall. Mater., 1990, vol. 24, pp. 1483–87.

    Article  CAS  Google Scholar 

  22. D.P. Myriounis, S.T. Hasan, and T.E. Matikas: Compos. Interfaces, 2008, vol. 15, pp. 495–514.

    Article  CAS  Google Scholar 

  23. Z. Shi, M. Gu, J. Liu, G. Liu, J.-C. Lee, D. Zhang, and R. Wu: Chin. Sci. Bull., 2001, vol. 46, pp. 1948–52.

    Article  CAS  Google Scholar 

  24. W.M. Zhong, L’Esperance, and M. Suery: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2637–49.

  25. J.H. Westbrook: Metall. Rev., 1964, vol. 9, pp. 415–70.

    CAS  Google Scholar 

  26. D. McLean: Grain Boundaries in Metals, University Press, Oxford, United Kingdom, 1957, p. 118.

    Google Scholar 

  27. J.R. Rellick and C.J. McMahon: Metall. Trans., 1974, vol. 5, pp. 2439–50.

    Article  CAS  Google Scholar 

  28. D.R. Harries and A.D. Marwick: Phil. Trans. R. Soc. London A, 1980, vol. 295, pp. 197–207.

    Article  ADS  CAS  Google Scholar 

  29. D.R. Gaskell: Introduction to Metallurgical Thermodynamics, Hemisphere, New York, NY, 1981, p. 287.

    Google Scholar 

  30. R. Arone, O. Botstein, and B. Shpigler: Isr. J. Technol., 1988, vol. 24, pp. 393–99.

    CAS  Google Scholar 

  31. S.V. Kamat, J.O. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37, pp. 2395–2402.

    Article  CAS  Google Scholar 

  32. Y. Flom and R.J. Arsenault: Acta Metall., 1989, vol. 37, pp. 2413–23.

    Article  CAS  Google Scholar 

  33. D.J. Lloyd, H. Lagace, A. McLeod, and P.L. Morris: Mater. Sci. Eng. A, 1989, vol. 107, pp. 73–80.

    Article  Google Scholar 

  34. T.J.A. Doel and P. Bowen: Compos. Part A, 1996, vol. 27, pp. 655–65.

    Article  Google Scholar 

  35. D.J. Lloyd: Acta Metall. Mater., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of New South Wales @ Australian Defence Force Academy for supporting the research work reported in this article. The authors are obliged to the Australian Institute of Nuclear Science and Engineering (AINSE) for supporting the materials’ synthesis performed at the Australian Nuclear Science and Technology Organization (ANSTO) under AINSE Grant No. AINGRA07167. The authors also thank the Electron Microscopy Unit (EMU), Australian National University, Canberra for assisting with the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmed.

Additional information

Manuscript submitted May 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A., Neely, A.J., Shankar, K. et al. Synthesis, Tensile Testing, and Microstructural Characterization of Nanometric SiC Particulate-Reinforced Al 7075 Matrix Composites. Metall Mater Trans A 41, 1582–1591 (2010). https://doi.org/10.1007/s11661-010-0201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0201-y

Keywords

Navigation