Skip to main content
Log in

Film-Induced Cleavage of Ag-Au Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Single-shot fracture experiments have been carried out in a dealloying environment (perchloric acid) on Ag-20 at. pct Au and Ag-23 at. pct Au alloys in the form of thin wire and foil, respectively. Such environments produce a nanoporous metallic layer on the surface. Transgranular fracture was promoted in some of the wire experiments by inducing a bamboo grain structure. Using the wires, it was shown that complete brittle intergranular or transgranular fracture could be obtained, either by applying a very low tensile stress during dealloying, by rapidly straining the wire after dealloying without stress, or by straining to failure after first dropping the potential to a value where little or no further faradaic reaction was possible. Extremely low fracture stresses were found, especially for intergranular fracture, and all fracture events were sudden with no secondary substrate fracture. The work with foils showed that some irreproducibility noted in the response of the wires was associated with premature self-fracture of the dealloyed layer. By optimizing the condition of the dealloyed layer, extremely reproducible and complete film-induced fractures were obtained. These dealloyed layers showed properties not previously seen, such as an ability to inject deep substrate cracks even after a 5-minute immersion in deionized water. Recent studies showing extraordinary mechanical properties of dealloyed layers, such as near-theoretical strength in compression, give more credibility to this still-mysterious fracture mechanism. A detailed rebuttal of the claims of the alternative “surface mobility” model is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Sieradzki, R.C. Newman: Philos. Mag. A, 1985, vol. 51, pp. 95–132

    Article  ADS  CAS  Google Scholar 

  2. K. Sieradzki, R.C. Newman: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1101–13

    Article  ADS  CAS  Google Scholar 

  3. F. Friedersdorf, K. Sieradzki: Corrosion, 1996, vol. 52, pp. 331–36

    CAS  Google Scholar 

  4. C. Edeleanu, A.J. Forty: Philos. Mag., 1960, vol. 5, pp. 1029–40

    Article  ADS  CAS  Google Scholar 

  5. A.J. Bursle and E.N. Pugh: in Mechanisms of Environment Sensitive Cracking of Materials, The Metals Society, London, 1977, pp. 471–81

  6. A.J. Bursle and E.N. Pugh: in Environment-Sensitive Fracture of Engineering Materials, AIME, Warrendale, PA, 1979, pp. 18–42

  7. J.A. Beavers, E.N. Pugh: Metall. Trans. A, 1980, vol. 11A, pp. 809–20

    CAS  ADS  Google Scholar 

  8. E.N. Pugh: in Atomistics of Fracture, Plenum, New York, NY, 1983, pp. 997–1010

  9. P.W. Slattery, J. Smit, and E.N. Pugh: in Environment-Sensitive Fracture, Evaluation and Comparison of Test Methods, ASTM STP 821, ASTM, Philadelphia, PA, 1984, pp. 399–411

  10. D.V. Beggs, M.T. Hahn, and E.N. Pugh: in Hydrogen Embrittlement and Stress Corrosion Cracking, Chicago, IL, ASM, Metals Park, OH, 1984, pp. 181–205

  11. E.N. Pugh: Corrosion, 1985, vol. 41, pp. 517–26

    CAS  Google Scholar 

  12. U. Bertocci, E.N. Pugh: in Corrosion Chemistry within Pits, Crevices and Cracks, A. Turnbull, ed., HMSO, London, 1987, pp. 187–98

    Google Scholar 

  13. U. Bertocci and E.N. Pugh: Proc. 10th Int. Congr. on Metallic Corrosion, Madras, India, 1987, vol. V, pp. 219–29

  14. U. Bertocci, E.N. Pugh, R.E. Ricker: Environment-Induced Cracking of Metals, R.P. Gangloff, M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 273–86

    Google Scholar 

  15. B.D. Lichter: Microstruct. Sci., 1986, vol. 13, pp. 361–78

    CAS  Google Scholar 

  16. T.B. Cassagne, W.F. Flanagan, B.D. Lichter: Metall. Trans. A, 1986, vol. 17A, pp. 703–10

    ADS  CAS  Google Scholar 

  17. T.B. Cassagne, W.F. Flanagan, B.D. Lichter: Metall. Trans. A, 1988, vol. 19A, pp. 281–92

    ADS  CAS  Google Scholar 

  18. R.C. Newman, T. Shahrabi, K. Sieradzki: Scripta Metall., 1989, vol. 23, pp. 71–74

    Article  CAS  Google Scholar 

  19. R.G. Kelly, T. Shahrabi, A.J. Frost, R.C. Newman: Metall. Trans. A, 1991, vol. 22A, pp. 191–97

    Google Scholar 

  20. R.G. Kelly, A.J. Young, R.C. Newman: in Electrochemical Impedance: Analysis and Interpretation, D.C. Silverman, M.W. Kendig, eds., ASTM STP 1188, ASTM, Philadelphia, PA, 1992, pp. 94–112

    Google Scholar 

  21. M. Saito, G.S. Smith, R.C. Newman: Corros. Sci., 1993, vol. 35, pp. 411–17

    Article  CAS  Google Scholar 

  22. R.C. Newman, M. Saito: in Corrosion-Deformation Interactions, T. Magnin, J.M. Gras, eds., Fontainebleau, France, 1993, pp. 3–26

    Google Scholar 

  23. A. Barnes, R.C. Newman: Met. Mater. Process., 1996, vol. 8, pp. 211–17

    CAS  Google Scholar 

  24. R.C. Newman: in Corrosion Mechanisms in Theory and Practice, 2nd ed., P. Marcus, J. Oudar, eds., Marcel Dekker, New York, NY, 2002, pp. 399–450

    Google Scholar 

  25. J. Weissmüller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Würschum, H. Gleiter: Science, 2003, vol. 300, pp. 312–15

    Article  PubMed  ADS  CAS  Google Scholar 

  26. C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmüller: Appl. Phys. Lett., 2006, vol. 89, p. 061920

    Article  ADS  CAS  Google Scholar 

  27. A. Mathur, J. Erlebacher: Appl. Phys. Lett., 2007, vol. 90, p. 061910

    Article  ADS  CAS  Google Scholar 

  28. N.A. Senior, R.C. Newman: Nanotechnol., 2006, vol. 17, pp. 2311–16

    Article  ADS  CAS  Google Scholar 

  29. A. Dursun, D.V. Pugh, S.G. Corcoran: J. Electrochem. Soc., 2005, vol. 152, pp. B65–B72

    Article  CAS  Google Scholar 

  30. J. Erlebacher: J. Electrochem. Soc., 2004, vol. 151, pp. C614–C626

    Article  CAS  Google Scholar 

  31. S.A. Serebrinsky, J.R. Galvele: Corros. Sci., 2004, vol. 46, pp. 591–612

    Article  CAS  Google Scholar 

  32. J.R. Galvele: Corros. Sci., 1987, vol. 27, pp. 1–33

    Article  CAS  Google Scholar 

  33. G.S. Duffo, J.R. Galvele: Corros. Sci., 1988, vol. 28, pp. 207–10

    Article  CAS  Google Scholar 

  34. R.B. Rebak, J.R. Galvele: Corros. Sci., 1989, vol. 29, pp. 1003–18

    Article  CAS  Google Scholar 

  35. G.S. Duffo, J.R. Galvele: Corros. Sci., 1990, vol. 30, pp. 249–65

    Article  CAS  Google Scholar 

  36. G.S. Duffo, M. Giordano, J.R. Galvele: Corros. Sci., 1990, vol. 30, pp. 1149–52

    Article  CAS  Google Scholar 

  37. M.G. Alvarez, M. Giordano, C. Manfredi, J.R. Galvele: Corrosion, 1990, vol. 46, pp. 717–26

    CAS  Google Scholar 

  38. J.R. Galvele: Corros. Sci., 1990, vol. 30, pp. 955–58

    Article  CAS  Google Scholar 

  39. J.R. Galvele, R.M. Torres, R.M. Carranza: Corros. Sci., 1990, vol. 31, pp. 563–71

    Article  CAS  Google Scholar 

  40. G.L. Bianchi, J.R. Galvele: Corros. Sci., 1993, vol. 34, pp. 1411–22

    Article  CAS  Google Scholar 

  41. G.S. Duffo, J.R. Galvele: Metall. Trans. A, 1993, vol. 24A, pp. 425–33

    ADS  CAS  Google Scholar 

  42. G.S. Duffo, J.R. Galvele: Corros. Sci., 1993, vol. 34, pp. 79–92

    Article  CAS  Google Scholar 

  43. J.R. Galvele: Corros. Sci., 1993, vol. 35, pp. 419–34

    Article  CAS  Google Scholar 

  44. G.L. Bianchi, J.R. Galvele: Corros. Sci., 1994, vol. 36, pp. 611–19

    Article  CAS  Google Scholar 

  45. I.A. Maier, J.S. Fernandez, J.R. Galvele: Corros. Sci., 1995, vol. 37, pp. 1–16

    Article  CAS  Google Scholar 

  46. J.R. Galvele: J. Nucl. Mater., 1996, vol. 229, pp. 139–48

    Article  ADS  CAS  Google Scholar 

  47. C.M. Giordano, G.S. Duffo, J.R. Galvele: Corros. Sci., 1997, vol. 39, pp. 1915–23

    Article  CAS  Google Scholar 

  48. J.R. Galvele, G.S. Duffo: Corros. Sci., 1997, vol. 39, pp. 605–08

    Article  CAS  Google Scholar 

  49. J.R. Galvele: Corrosion, 1999, vol. 55, pp. 723–31

    CAS  Google Scholar 

  50. S.A. Serebrinsky, G.S. Duffo, J.R. Galvele: Corros. Sci., 1999, vol. 41, pp. 191–95

    Article  CAS  Google Scholar 

  51. M.G. Alvarez, S.A Fernandez, J.R. Galvele: Corrosion, 2000, vol. 42, pp. 739–52

    Article  CAS  Google Scholar 

  52. J.R. Galvele: Electrochim. Acta, 2000, vol. 45, pp. 3537–41

    Article  CAS  Google Scholar 

  53. M.L. Montoto, G.S. Duffo, J.R. Galvele: Corros. Sci., 2001, vol. 43, pp. 755–64

    Article  CAS  Google Scholar 

  54. M.G. Alvarez, S.A Fernandez, J.R. Galvele: Corros. Sci., 2002, vol. 44, pp. 2831–40

    Article  CAS  Google Scholar 

  55. S.B. Farina, G.S. Duffo, J.R. Galvele: Corros. Sci., 2003, vol. 45, pp. 2497–512

    Article  CAS  Google Scholar 

  56. S.B. Farina, G.S. Duffo, J.R. Galvele: Corrosion, 2003, vol. 59, pp. 436–42

    CAS  Google Scholar 

  57. S.A. Serebrinsky, J.R. Galvele: Corros. Sci., 2004, vol. 46, pp. 591–612

    Article  CAS  Google Scholar 

  58. M.G. Alvarez, P. Lapitz, S.A. Fernandez, J.R. Galvele: Corros. Sci., 2005, vol. 47, pp. 1643–52

    Article  CAS  Google Scholar 

  59. S.B. Farina, G.S. Duffo, J.R. Galvele: Corros. Sci., 2005, vol. 47, pp. 239–45

    Article  CAS  Google Scholar 

  60. S.B. Farina, G.S. Duffo, J.R. Galvele: Corrosion, 2005, vol. 61, pp. 847–56

    CAS  Google Scholar 

  61. S.B. Farina, G.S. Duffo, J.R. Galvele: Corros. Sci., 2007, vol. 49, pp. 1687–95

    Article  CAS  Google Scholar 

  62. K. Sieradzki, F.J. Friedersdorf: Corros. Sci., 1994, vol. 36, pp. 669–75

    Article  CAS  Google Scholar 

  63. E.M. Gutman: Corros. Sci., 2003, vol. 45, pp. 2105–17

    Article  CAS  Google Scholar 

  64. E.M. Gutman: Corros. Sci., 2004, vol. 46, pp. 1801–06

    Article  CAS  Google Scholar 

  65. E.M. Gutman: Corrosion, 2005, vol. 61, pp. 197–200

    Article  CAS  Google Scholar 

  66. J.R. Galvele: Corros. Sci., 1994, vol. 36, pp. 901–10

    Article  CAS  Google Scholar 

  67. J.R. Galvele: Corros. Sci., 2003, vol. 45, pp. 2119–28

    Article  CAS  Google Scholar 

  68. J.R. Galvele: Corros. Sci., 2004, vol. 46, pp. 1807–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

An NSERC Senior Industrial Research Chair in Nuclear Engineering awarded to R.C. Newman funded the latter part of this research. The contributing industrial partners are Ontario Power Generation, Atomic Energy of Canada Ltd., and Bruce Power, via the University Network of Excellence in Nuclear Engineering (UNENE). Andrew Barnes’ Ph.D. was funded by an appointment as Teaching Assistant in UMIST, Manchester, United Kingdom, and Nicholas Senior’s Ph.D. was funded by EPSRC, Swindon, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Senior.

Additional information

Manuscript submitted September 3, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, A., Senior, N.A. & Newman, R.C. Film-Induced Cleavage of Ag-Au Alloys. Metall Mater Trans A 40, 58–68 (2009). https://doi.org/10.1007/s11661-008-9714-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9714-z

Keywords

Navigation