Skip to main content

Advertisement

Log in

Ti (Zr)-Cu-Ni Bulk Metallic Glasses with Optimal Glass-Forming Ability and Their Compressive Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation of bulk metallic glasses (BMGs) was systematically investigated in the ternary Ti-Cu-Ni and quaternary Ti-Zr-Cu-Ni systems. Over a relatively wide composition range (50 to 57 at. pct Ti, 34 to 44 at. pct Cu, and 6 to 10 at. pct Ni) in the ternary Ti-Cu-Ni system, new Ti-based BMGs with a critical diameter of 1 mm have been discovered in the triangular region enclosed by the three intermetallic compounds TiNi, TiCu, and Ti2Cu. Partial substitution of Zr for Ti improved the glass-forming ability (GFA), and the BMGs of 3 mm in diameter were obtained in the composition range of 51 to 53 at. pct (Ti + Zr), 38 to 41 at. pct Cu, and 8 to 10 at. pct Ni. The enhanced GFA compared with the ternary Ti-Ni-Cu system was attributed to the effects of Zr on stabilizing the undercooled liquid. These Ti-based BMGs had compressive fracture strength higher than 2 GPa. Among them, the Ti50Cu43Ni7 glass exhibited a reproducible plastic strain larger than 5 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.B. Kim, J. Das, X.D. Wang, X. Zhang, J. Eckert, S. Yi: Phil. Mag. Lett., 2006, vol. 86, pp. 479–86

    Article  CAS  Google Scholar 

  2. G. Wang, Y.H. Liu, P. Yu, D.Q. Zhao, M.X. Pan, and W.H. Wang: Appl. Phys. Lett., 2006, vol. 89, pp. 251909-1–251909-3

  3. T. Ohkubo, D. Nagahama, T. Mukai, K. Hono: J. Mater. Res., 2007, vol. 22, pp. 1406–13

    Article  CAS  Google Scholar 

  4. X.F. Zhang, K.B. Kim, J. Das, S. Yi, J. Eckert: J. Mater. Res., 2007, vol. 22, pp. 2223–29

    Article  CAS  Google Scholar 

  5. J. Shen, Y.J. Huang, J.F. Sun: J. Mater. Res., 2007, vol. 22, pp. 3067–74

    Article  CAS  Google Scholar 

  6. E.S. Park, H.J. Chang, J.Y. Lee, D.H. Kim: J. Mater. Res., 2007, vol. 22, pp. 3440–47

    Article  CAS  Google Scholar 

  7. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Appl. Phys. Lett., 2005, vol. 87, pp. 181915-1–181915-3

  8. Q. Zheng, J. Xu, and E. Ma: J. Appl. Phys., 2007, vol. 102, pp. 113519-1–113519-5

  9. D.H. Xu, G. Duan, and W.L. Johnson: Phys. Rev. Lett., 2004, vol. 92, pp. 245504-1–245504-4

  10. C.L. Dai, H. Guo, Y. Shen,Y. Li, E. Ma, J. Xu: Scripta Mater., 2006, vol. 54, pp. 1403–08

    Article  CAS  Google Scholar 

  11. P. Jia, H. Guo, Y. Li, J. Xu, E. Ma: Scripta Mater., 2006, vol. 54, pp. 2165–68

    Article  CAS  Google Scholar 

  12. Y. Shen, E. Ma, J. Xu: J. Mater. Sci. Technol., 2008, vol. 24, pp. 149–52

    Article  CAS  Google Scholar 

  13. Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter: Phys. Rev. Lett., 2004, vol. 92, pp. 245503-1–245503-4

  14. V. Ponnambalam, S.J. Poon, G.J. Shiflet: J. Mater. Res., 2004, vol. 19, pp. 1320–23

    Article  CAS  Google Scholar 

  15. T. Zhang, A. Inoue: Mater. Trans. JIM, 1999, vol. 40, pp. 301–06

    CAS  Google Scholar 

  16. T. Zhang, A. Inoue: Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 771–74

    Google Scholar 

  17. C.L. Ma, S. Ishihara, H. Soejima, N. Nishiyama, A. Inoue: Mater. Trans., 2004, vol. 45, pp. 1802–06

    Article  CAS  Google Scholar 

  18. C.L. Ma, H. Soejima, S. Ishihara, K. Amiya, N. Nishiyama, A. Inoue: Mater. Trans., 2004, vol. 45, pp. 3223–27

    Article  CAS  Google Scholar 

  19. H. Men, S.J. Pang, A. Inoue, T. Zhang: Mater. Trans., 2005, vol. 46, pp. 2218–20

    Article  CAS  Google Scholar 

  20. Y.J. Huang, J. Shen, J.F. Sun, X.B. Yu: J. Alloys Compd., 2007, vol. 427, pp. 171–75

    Article  CAS  Google Scholar 

  21. F.Q. Guo, H.J. Wang, S.J. Poon, and G.J. Shiflet: Appl. Phys. Lett., 2005, vol. 86, pp. 091907-1–091907-3

  22. J.M. Park, Y.C. Kim, W.T. Kim, D.H. Kim: Mater. Trans., 2004, vol. 45, pp. 595–98

    Article  CAS  Google Scholar 

  23. G. Duan, K.D. Blauwe, M.L. Lind, J.P. Schramm, W.L. Johnson: Scripta Mater., 2008, vol. 58, pp. 465–68

    Article  CAS  Google Scholar 

  24. T. Zhang, A. Inoue: Mater. Trans. JIM, 1998, vol. 39, pp. 1001–06

    CAS  Google Scholar 

  25. Y.C. Kim, S. Yi, W.T. Kim, D.H. Kim: Mater. Sci. Forum, 2001, vols. 360–362, pp. 67–72

    Article  Google Scholar 

  26. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma: Appl. Phys. Lett., 2004, vol. 84, pp. 4029–31

    Article  CAS  Google Scholar 

  27. H. Ma, Q. Zheng, J. Xu, Y. Li, E. Ma: J. Mater. Res., 2005, vol. 20, pp. 2252–55

    Article  CAS  Google Scholar 

  28. H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma: J. Mater. Res., 2006, vol. 21, pp. 2204–14

    Article  CAS  Google Scholar 

  29. R.D. Conner, W.L. Johnson: Scripta Mater., 2006, vol. 55, pp. 645–48

    Article  CAS  Google Scholar 

  30. Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang: Science, 2007, vol. 315, pp. 1385–88

    Article  CAS  Google Scholar 

  31. G. Duan, K.D. Blauwe, M.L. Lind, J.P. Schramm, W.L. Johnson: Scripta Mater., 2008, vol. 58, pp. 159–62

    CAS  Google Scholar 

  32. Y.L. Wang, E. Ma, J. Xu: Phil. Mag. Lett., 2008, vol. 88, pp. 319–25

    Article  CAS  Google Scholar 

  33. K.M. Knowles, D.A. Smith: Acta Metall., 1981, vol. 29, pp. 101–10

    Article  CAS  Google Scholar 

  34. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z.H. Zhang, T. Lograsso, D. Hsu, C.H. Chesterlo, Y.Y. Ye, A. Slager, D. Kesse: Nat. Mater., 2003, vol. 2, pp. 587–91

    Article  CAS  Google Scholar 

  35. J. Morris, Y. Ye, M. Kremar, C.L. Fu: Mater. Res. Soc. Symp. Proc., 2007, vol. 980, pp. 1106–10

    Google Scholar 

  36. Y. Li, S.J. Poon, G.J. Shiflet, J. Xu, D.H. Kim, J.F. Löffler: MRS Bull., 2007, vol. 32, pp. 624–28

    CAS  Google Scholar 

  37. Q. Zheng, H. Ma, E. Ma, J. Xu: Scripta Mater., 2006, vol. 55, pp. 541–44

    Article  CAS  Google Scholar 

  38. L. Zhang, M.J. Zhuo, J. Xu: J. Mater. Res., 2008, vol. 23, pp. 688–99

    Article  CAS  Google Scholar 

  39. L. Zhang, E. Ma, J. Xu: Intermetallics, 2008, vol. 16, pp. 584–86

    Article  CAS  Google Scholar 

  40. S.P. Alisova, N.V. Volynskaya, P.B. Budbery, and A.V. Kobylkin: in Handbook of Ternary Alloy Phase Diagrams, P. Villars, A. Prince, and H. Okamoto, eds., ASM INTERNATIONAL, Materials Park, OH, 1995, vol. 8, pp. 9846–61

  41. G. He, J. Eckert, M. Hagiwara: Mater. Lett., 2006, vol. 60, pp. 656–61

    Article  CAS  Google Scholar 

  42. W.F. Wu, Y. Li, C.A. Schuh: Phil. Mag., 2008, vol. 88, pp. 71–89

    Article  CAS  Google Scholar 

  43. K. Mondal, G. Kumar, T. Ohkubo, K. Oishi, T. Mukai, K. Hono: Phil. Mag. Lett., 2007, vol. 87, pp. 625–35

    Article  CAS  Google Scholar 

  44. J.L. Murray: in Binary Alloy Phase Diagram, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM INTERNATIONAL, 1990, vol. 2, pp. 1494–96

  45. F.R. De Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen: Cohesion in Metals, North-Holland, Amsterdam, 1988

  46. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma: Nature, 2006, vol. 439, pp. 419–25

    Article  CAS  Google Scholar 

  47. W.J. Meng, B. Fultz, E. Ma, W.L. Johnson: Appl. Phys. Lett., 1987, vol. 51, p. 661

    Article  CAS  Google Scholar 

  48. Y.Y. Zhao, E. Ma, J. Xu: Scripta Mater., 2008, vol. 58, pp. 496–99

    Article  CAS  Google Scholar 

  49. X.J. Gu, S.J. Poon, G.J. Shiflet, M. Widom: Acta Mater., 2008, vol. 56, pp. 88–94

    Article  CAS  Google Scholar 

  50. H.J. Wang, X.J. Gu, S.J. Poon, and G.J. Shiflet: Phys. Rev. B., 2008, vol. 77, pp. 014204-1–014204-8

  51. R. Ferro and A. Saccone: in Structure of Intermetallc Compounds and Phases in Physical Metallurgy, 4th revised and enhanced ed., R.W. Cahn and P. Haasen, eds., Elsevier Science B.V., Amsterdam, The Netherlands, 1996, p. 205

  52. Y.K. Xu, H. Ma, J. Xu, E. Ma: Acta Mater., 2005, vol. 53, pp. 1857–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the stimulating discussion with Professors E. Ma, Y. Li, and C. Suryanarayana. This research was supported by the National Natural Science Foundation of China under Contract No. 50871112 and the National Basic Research Program of China (973 Program) under Contract No. 2007CB613906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Manuscript submitted March 5, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YL., Xu, J. Ti (Zr)-Cu-Ni Bulk Metallic Glasses with Optimal Glass-Forming Ability and Their Compressive Properties. Metall Mater Trans A 39, 2990–2997 (2008). https://doi.org/10.1007/s11661-008-9647-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9647-6

Keywords

Navigation