Skip to main content
Log in

A Model for High-Temperature Pitting Corrosion in Nickel-Based Alloys Involving Internal Precipitation of Carbides, Oxides, and Graphite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present investigation is concerned with fundamental studies of the mechanisms of pitting corrosion in the Ni-based alloys 602 and 693, following long-term exposure to syngas at 540 °C and a 35-bar total pressure. The 4-years’ plant-exposed alloys were examined using synchrotron X-ray diffraction (XRD) in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is concluded that the pitting corrosion attacks start when carbon diffuses into the bulk of the alloys following the breakdown of the protective Cr2O3-Al2O3 surface oxide layer. During the incubation period, this oxide layer provides an effective barrier against carbon intrusion by virtue of its ability to restore cracks and flaws through diffusion. The corrosion pits then grow by a process of internal carburization and oxidation, in which carbides, oxides, and graphite form separately within an approximately 30-μm-thick belt in front of the pits (referred to as the white zone). In particular, the oxidation of the internal Cr3C2 carbides occurring close to the white zone/pit interface is associated with large volume changes. This volume expansion results in the buildup of high mechanical stresses within the white zone and, eventually, to the complete disintegration of the original alloy matrices into a layered pit microstructure consisting of Ni + Fe and Cr2O3 + Al2O3 + graphite. The observed microstructural changes have been rationalized through detailed modeling of the physical reactions involved, leading to the development of new and comprehensive models for high-temperature pitting corrosion in Ni-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R.T. Jones and K.L. Baumert: Corrosion/2001, Paper No. 1372, NACE International, Houston, TX, 2001

  2. H.J. Grabke, R. Krajak, J.C. Nava Paz: Corros. Sci., 1993, vol. 35 (5–8), pp. 1141–50

    Article  CAS  Google Scholar 

  3. R.C. Schueler: Hydrocarbon Process., 1972, vol. 51, pp. 73–75

    CAS  Google Scholar 

  4. G.Y. Lai: High-Temperature Corrosion of Engineering Alloys, 1st ed., ASM INTERNATIONAL, Materials Park, OH, 1990

    Google Scholar 

  5. J. Pattinson: J. Iron Inst., 1876, vol. 1, pp. 85–100

    Google Scholar 

  6. E.Q. Camp, C. Phillips, L. Gross: Corrosion, 1945, vol. 1 (3), pp. 149–60

    CAS  Google Scholar 

  7. H.K. Ihrig: Trans. Electrochem. Soc., 1947, vol. 91, pp. 641–54

    Google Scholar 

  8. F.A. Prange: Corrosion, 1959, vol. 15 (12), pp. 619t–621t

    CAS  Google Scholar 

  9. F. Eberle, R.D. Wylie: Corrosion, 1959, vol. 15 (12), pp. 622t–626t

    CAS  Google Scholar 

  10. W.B. Hoyt, R.H. Caughey: Corrosion, 1959, vol. 15 (12), pp. 627t–630t

    CAS  Google Scholar 

  11. R.F. Hochman, J.H. Burson: Am. Pet. Inst. Div. Refin. Proc., 1966, vol. 46, pp. 331–44

    CAS  Google Scholar 

  12. H.J. Grabke, R. Krajak, E.M. Müller-Lorenz: Werkstoffe Korros., 1993, vol. 44, pp. 89–97

    Article  CAS  Google Scholar 

  13. E. Pippel, J. Woltersdorf, H.J. Grabke, S. Strauss: Steel Res., 1995, vol. 66 (5), pp. 217–21

    CAS  Google Scholar 

  14. D.C. Agarwal, W.R. Herda, U. Brill: Adv. Mater. Processes, 1995, vol. 148 (4), pp. 42–45

    CAS  Google Scholar 

  15. M.L. Holland, H.J. De Bruyn: Int. J. Press. Ves. Pip., 1996, vol. 66 (1–3), pp. 125–33

    Article  CAS  Google Scholar 

  16. C.M. Chun, T.A. Ramanarayanan, J.D. Mumford: Mater. Corros., 1999, vol. 50, pp. 634–39

    Article  CAS  Google Scholar 

  17. B. Schmid: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2000

  18. B. Schmid, J.C. Walmsley, Ø. Grong, R. Ødegård: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 345–54

    Article  CAS  Google Scholar 

  19. B.A. Baker and G.D. Smith: Corrosion/2000, Paper No. 257, NACE International, Houston, TX, 2000

  20. H.J. De Bruyn, E.H. Edwin, and S. Brendryen: Corrosion/2001, Paper No. 1383, NACE International, Houston, TX, 2000

  21. Z. Zeng, K. Natesan, V.A. Maroni: Oxid. Met., 2002, vol. 58 (1–2), pp. 147–70

    Article  CAS  Google Scholar 

  22. C.H. Toh: Doctoral Thesis, University of New South Wales, Sydney, 2002

  23. C.H. Toh, P.R. Munroe, D.J. Young: Oxid. Met., 2002, vol. 58 (1–2), pp. 1–21

    Article  CAS  Google Scholar 

  24. P. Szakálos, R. Pettersson, S. Hertzman: Corros. Sci., 2002, vol. 44 (10), pp. 2253–70

    Article  Google Scholar 

  25. P. Szakálos: Mater. Corros., 2003, vol. 54 (10), pp. 756–62

    Article  CAS  Google Scholar 

  26. A. Schneider, H.J. Grabke: Mater. Corros., 2003, vol. 54 (10), pp. 793–98

    Article  CAS  Google Scholar 

  27. F.D. Gabriele, J.R. Bernstein, M.M. Al-Qhatani, Z. Liu, M.P. Jordan, J.A. Richardson, F.H. Stott: Mater. Corros., 2003, vol. 54 (11), pp. 854–59

    Article  CAS  Google Scholar 

  28. A.T.W. Kempen, J.C. Wortel: Mater. Corros., 2004, vol. 55 (4), pp. 249–58

    Article  CAS  Google Scholar 

  29. Y. Nishiyama, T. Kudo, N. Otsuka: Mater. Trans., 2005, vol. 46 (8), pp. 1890–96

    Article  CAS  Google Scholar 

  30. R. Kirchheiner, D.J. Young, P. Becker, and R.N. Durham: Corrosion/2005, Paper No. 5428, NACE International, Houston, TX, 2005

  31. H. Stahl, S. Gyde Thomsen: Ammonia Plant Saf. Relat. Facil., 1996, vol. 36, pp. 180–91

    CAS  Google Scholar 

  32. S.B. Parks, C.M. Schillmoller: Stainless Steel World, 1997, vol. 9 (3), pp. 44–49

    Google Scholar 

  33. H.J. De Bruyn, B. Schmid, Ø. Grong, and J.Z. Albertsen: Corrosion/2005, Paper No. 5413, NACE International, Houston, TX

  34. K. Hirotani: Proc. 15th Int. Offshore and Polar Eng. Conf., The International Society of Offshore and Polar Engineers, Seoul, Korea, 2005, pp. 54–61

  35. J.Z. Albertsen: Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2007

  36. H.J. Grabke: Mater. Corros., 2003, vol. 54 (10), pp. 736–46

    Article  CAS  Google Scholar 

  37. Y. Nishiyama, N. Otsuka, T. Kudo, and O. Miyahara: Corrosion/2003, Paper No. 3471, NACE International, Houston, TX

  38. I. Koszman: in High Temperature Gas-Metal Reactions in Mixed Environments, A. Jansson, Z.A. Foroulis, eds., AIME, New York, NY, 1973, pp. 155–67

    Google Scholar 

  39. P. Elliott: Corrosion/2000, Paper No. 527, NACE International, Houston, TX, 2000

  40. S.R. Shatynski, H.J. Grabke: Arch. für das Eisenhüttenwesen, 1978, vol. 49 (3), pp. 129–33

    CAS  Google Scholar 

  41. H.J. Grabke: Scripta Metall., 1975, vol. 9 (11), pp. 1181–84

    Article  CAS  Google Scholar 

  42. H.J. Grabke, A. Schnaas: in Alloy 800, W. Betteridge, ed., Petten, The Netherlands, 1978, pp. 195–211

    Google Scholar 

  43. R. Petkovic-Luton, T.A. Ramanarayanan: Oxid. Met., 1990, vol. 34 (5–6), pp. 381–400

    Article  CAS  Google Scholar 

  44. A. Perkins: in Behaviour of High Temperature Alloys in Aggressive Environments, Petten, The Netherlands, 1980, pp. 617–47

    Google Scholar 

  45. X.G. Zheng, D.J. Young: Oxid. Met, 1994, vol. 42 (3–4), pp. 163–90

    Article  CAS  Google Scholar 

  46. H.J. Grabke and E.M. Müller-Lorenz: Corrosion/2001, Paper No. 1373, NACE International, Houston, TX, 2001

  47. B. Schmid, Ø. Grong, R. Ødegård: Mater. Corros., 1999, vol. 50 (11), pp. 647–53

    Article  CAS  Google Scholar 

  48. O.V.D. Biest, J.M. Harrison, J.F. Norton: Int. Conf. Behaviour of High Temperature Alloys in Aggressive Environments, I. Kirman, ed., The Metals Society, London, 1979, pp. 681–703

    Google Scholar 

  49. M. Hänsel, C.A. Boddington, D.J. Young: Corros. Sci., 2003, vol. 45, pp. 967–81

    Article  Google Scholar 

  50. Y. Nishiyama, N. Otsuka, T. Kudo: Corros. Sci., 2006, vol. 48 (8), pp. 2064–83

    Article  CAS  Google Scholar 

  51. R.A. Perkins, W. Coons, D.J. Radd: in Properties of High Temperature Alloys, With Emphasis on Environmental Effects, The Electrochemical Society, Princeton, NJ, 1976, pp. 733–49

    Google Scholar 

  52. P. Szakálos: Doctoral Thesis, Royal Institute of Technology, Stockholm, 2004

  53. J.Z. Albertsen, Ø. Grong, R.H. Mathiesen, B. Schmid: Corros. Eng., Sci. Technol., 2005, vol. 40 (3), pp. 239–43

    Article  CAS  Google Scholar 

  54. M.J. Donachie, S.J. Donachie: Superalloys—A Technical Guide, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 2002

    Google Scholar 

  55. J. Wilson and D.C. Agarwal: Corrosion/2005, Paper No. 5423, NACE International, Houston, TX, 2005

  56. B.A. Baker, G.D. Smith, V.W. Hartmann, L.E. Shoemaker, and S.A. McCoy: Corrosion/2002, Paper No. 2394, NACE International, Houston, TX, 2002

  57. ESRF: www.esrf.fr/exp_facilities/BM1A/index.htm, 2005

  58. L.A. Giannuzzi, F.A. Stevie: Micron, 1999, vol. 30 (3), pp. 197–204

    Article  Google Scholar 

  59. R. Kilaas: MacTempas, 1992

  60. P. Villars, L.D. Calvert, W.B. Pearson: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 1st ed., ASM INTERNATIONAL, Metals Park, OH, 1985

    Google Scholar 

  61. FactSage: www.factsage.com, 2005

  62. CRCT-ThermFact-Inc, GTT-Technologies: FACT 53. Compound Database, 2005

  63. J. Cranck: The Mathematics of Diffusion, 2nd ed., Clarenden Press, Oxford, United Kingdom, 1975

    Google Scholar 

  64. P.G. Shewmon: Diffusion in Solids, 1st ed., McGraw-Hill Book Company, New York, NY, 1963

    Google Scholar 

  65. C. Wagner: Z. Elektrochem., 1959, vol. 63, pp. 772–82

    CAS  Google Scholar 

  66. U. Krupp, H.J. Christ: J. Phase Equilib. Diffus., 2005, vol. 26 (5), pp. 487–93

    Article  CAS  Google Scholar 

  67. R.F. Hochman: Proc. 3rd Int. Cong. Metallic Corrosion, University of Moscow Press, Moscow, 1969, pp. 119–33

  68. R.G. Olsson, E.T. Turkdogan: Metall. Trans., 1974, vol. 5, pp. 21–26

    CAS  Google Scholar 

  69. G.A. Jablonski, A. Geurts, J. Sacco, R.R. Biederman: Carbon, 1992, vol. 30 (1), pp. 87–98

    Article  CAS  Google Scholar 

  70. H.J. Grabke: Corrosion, 1995, vol. 51 (9), pp. 711–20

    Article  CAS  Google Scholar 

  71. R. Yin: Oxid. Met., 2003, vol. 60 (1–2), pp. 103–116

    Article  CAS  Google Scholar 

  72. Q. Wei, E. Pippel, J. Woltersdorf, H.J. Grabke: Mater. Corros., 1999, vol. 50 (11), pp. 628–33

    Article  CAS  Google Scholar 

  73. J.C. Nava Paz, H.J. Grabke: Oxid. Met., 1993, vol. 39 (5–6), pp. 437–56

    Article  CAS  Google Scholar 

  74. E. Pippel, J. Woltersdorf, R. Schneider: Mater. Corros., 1998, vol. 49 (5), pp. 309–16

    Article  CAS  Google Scholar 

  75. J.L. Meijering: in Advances in Materials Research, H. Herman, ed., Wiley-Interscience Publishers, New York, NY, 1971, pp. 1–81

    Google Scholar 

  76. J.P. Neumann, T. Zhong, Y.A. Chang: Bull. Alloy Phase Diagr., 1984, vol. 5 (2), pp. 141–43

    Article  CAS  Google Scholar 

  77. A. Engström: Doctoral Thesis, Royal Institute of Technology, Stockholm, 1996

  78. T. Rosenqvist: Principles of Extractive Metallurgy, 2nd ed., McGraw-Hill International Book Company, Singapore, 1983

    Google Scholar 

  79. D.R. Askeland: The Science and Engineering of Materials, 3rd ed., Stanley Thornes Publishers, Ltd., Cheltenham, 1998

    Google Scholar 

  80. Z. Zeng, K. Natesan: Chem. Mater., 2005, vol. 17 (14), pp. 3794–3801

    Article  CAS  Google Scholar 

  81. R. Schneider, E. Pippel, J. Woltersdorf, S. Strauss, H.J. Grabke: Steel Res., 1997, vol. 68 (7), pp. 326–32

    CAS  Google Scholar 

  82. P. Szakálos, M. Lundberg, R. Pettersson: Corros. Sci., 2006, vol. 48 (7), pp. 1679–95

    Article  CAS  Google Scholar 

  83. G. Aylward, T. Findlay: SI Chemical Data, 3rd ed., John Wiley & Sons, Brisbane, 1994

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the Norwegian Research Council and Statoil ASA through the ThermoTech and ANSY projects. The authors also acknowledge the SNBL, and, in particular, beam line director Hans P. Weber, for the allocation of in-house beam time to this project. The authors are also grateful to Mr. Kåre Johansson at Statoil Tjeldbergodden (Norway) for providing the plant-exposed materials and to Dr. Peter Heard at Bristol University (Bristol, United Kingdom) for preparing the FIB samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.Z. Albertsen.

Additional information

Manuscript submitted December 14, 2006.

Appendix

Appendix

  Symbols, Formulas, and Units Used in the High-Temperature Pitting Corrosion Models

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertsen, J., Grong, Ø., Walmsley, J. et al. A Model for High-Temperature Pitting Corrosion in Nickel-Based Alloys Involving Internal Precipitation of Carbides, Oxides, and Graphite. Metall Mater Trans A 39, 1258–1276 (2008). https://doi.org/10.1007/s11661-008-9494-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9494-5

Keywords

Navigation