Skip to main content
Log in

Characterization of Irradiated Microstructure by X-Ray Diffraction Line Profile Analysis

  • Symposium: Materials Behavior: Far from Equilibrium
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Zirconium-based alloys have been irradiated with 11 and 15 MeV proton and 116 MeV oxygen ions at different doses. The changes in the microstructure have been studied for the ion-irradiated alloys as a function of dose using X-ray diffraction line profile analysis (XRDLPA) based on the whole powder pattern fitting technique. It was observed that the microstructural parameters such as domain size, microstrain within the domain, and dislocation density did not change significantly with the increase in dose for proton-irradiated samples. A clear change was noticed in these microstructural parameters as a function of dose for oxygen-irradiated samples. There was a drastic decrease in domain size at a dose of 1 × 1017 O5+/m2, but these values reached a plateau with increasing dose. The values of microstrain and dislocation density increased significantly with the dose of irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. C. Abromeit: J. Nucl. Mater., 1994, vol. 216, pp. 78–96

    Article  CAS  Google Scholar 

  2. L.K. Mansur: J. Nucl. Mater., 1994, vol. 216, pp. 97–123

    Article  CAS  Google Scholar 

  3. Workshop on Correlation of Neutron and Charged Particle Damage, J.O. Stiegler, ed., Oak Ridge, Tenn, 1976, Technical Report No. 760673

  4. Int . Conf. on Radiation Effects in Breeder Reactor Structural Materials, M.L. Bleiberg and J.W. Bennet, eds., Scottsdale, AZ, 1977

  5. Int . Conf. on Effects of Radiation on Materials, H.R. Brager and J.S. Perrin, eds., Scottsdale, AZ, 1982, ASTM, Philadelphia, PA, 1982

  6. F.A. Garner, N.H. Packan, A.S. Kumar: Int. Conf. on Radiation-Induced Changes in Microstructure, Seattle, ASTM, Philadelphia, PA, 1986

    Google Scholar 

  7. Int . Conf. on Physics of Radiation Effects in Metals, G. Szenes, ed., Siofok, 1991; Mater. Sci. Forum, 1992, vol. 97, pp. 647–52

  8. Y. Etoh, S. Shimada: J. Nucl. Mater., 1993, vol. 200, pp. 59–69

    Article  CAS  Google Scholar 

  9. R. Borrelly, P. Merle: J. Nucl. Mater., 1990, vol. 173, pp. 105–07

    Article  CAS  Google Scholar 

  10. J. Gittus: Irradiation Effects in Crystalline Solids, Applied Science Publisher Ltd., London, 1978, p. 169

    Google Scholar 

  11. J.A. Brinkman: J. Appl. Phys., 1954, vol. 25, pp. 961–70

    Article  CAS  Google Scholar 

  12. M. Griffiths: J. Nucl. Mater., 1988, vol. 159, pp.190–218

    Article  CAS  Google Scholar 

  13. M. Kiritani: J. Nucl. Mater., 1994, vol. 216, pp. 220–64

    Article  CAS  Google Scholar 

  14. P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, M.K. Mitra: Acta Mater., 2004, vol. 52, pp. 5687–96

    Article  CAS  Google Scholar 

  15. R.L. Snyder: in The Rietveld Method, R.A. Young, ed., Oxford University Press, Oxford, United Kingdom, 1991, pp. 111–31

    Google Scholar 

  16. R.A. Young: in The Rietveld Method, R.A. Young, ed., Oxford University Press, Oxford, United Kingdom, 1991, pp. 1–38

    Google Scholar 

  17. P. Mukherjee, P.M.G. Nambissan, P. Sen, P. Barat, S.K. Bandyopadhyay, J.K. Chakravartty, S.L. Wadekar, S. Banerjee, S.K. Chattopadhyay, S.K. Chatterjee, M.K. Mitra: J. Nucl. Mater., 2001, vol. 297, pp. 341–44

    Article  CAS  Google Scholar 

  18. P. Mukherjee, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, S.K. Chatterjee, M.K. Mitra: J. Nucl. Mater., 2002, vol. 305, pp.169–74

    Article  CAS  Google Scholar 

  19. P. Mukherjee, A. Sarkar, P. Barat, B. Raj, U. Kanachi Mudali: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2351–60

    Article  CAS  Google Scholar 

  20. P. Mukherjee, P. Sen, P. Barat, S.K. Bandyopadhyay, S.K. Chattopadhyay, S.K. Chatterjee, M.K. Mitra: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2405–10

    Article  CAS  Google Scholar 

  21. Y.H. Dong, P. Scardi: J. Appl. Crystallogr., 2000, vol. 33, pp. 184–89

    Article  CAS  Google Scholar 

  22. J.I. Langford: in Accuracy in Powder Diffraction II, NSIT Special Publication 846, E. Prince and J.K. Stalick, eds., USG Printing Office, Washington, DC, 1992, pp. 110–26

  23. B.E. Warren, B.L. Averbach: J. Appl. Phys., 1950, vol. 21, pp. 595–99

    Article  CAS  Google Scholar 

  24. B.E. Warren, B.L. Averbach: J. Appl. Phys., 1952, vol. 23, pp. 497–502

    Article  CAS  Google Scholar 

  25. J.P. Biersack and L.G. Haggmark: Nucl. Instrum. Meth., 1980, vol. 174, pp. 257–69; the Stopping and Range of Ions in Matter (SRIM 2000) software developed by J. Ziegler and J.P. Biersack is available on the website http://www.research.ibm.com/ionbeams

  26. J. I. Langford: J. Appl. Cryst., 1978, vol. 11, pp. 10–14

    Article  CAS  Google Scholar 

  27. R.A. Young, D.B. Wiles: J. Appl. Cryst., 1982, vol. 15, pp. 430–38

    Article  CAS  Google Scholar 

  28. A. Brown and J.W. Edmonds: Adv. X-ray Anal. 1980, vol. 23, pp. 361–74

  29. G. Caglioti, A. Paoletti, F.P. Ricci: Nucl. Instrum. Meth., 1958, vol. 35, pp. 223–28

    Google Scholar 

  30. H.P. Klug, L.E. Alexander: X-Ray Diffraction Procedures for Polycrsytalline and Amorphous Materials, 2nd ed., Wiley, New York, NY, 1974

    Google Scholar 

  31. J.I. Langford, D. Louer: Rep. Prog. Phys., 1996, vol. 59, pp. 131–234

    Article  CAS  Google Scholar 

  32. M. Ahtee, L. Unonius, M. Nurmela, P. Suortti: J. Appl. Cryst., 1984, vol. 17, pp. 352–57

    Article  CAS  Google Scholar 

  33. B.E. Warren: X-Ray Diffraction, Addison-Wesley, Reading, MA, 1969, pp. 251–305

    Google Scholar 

  34. G.K. Williamson, R.E. Smallman: Philos. Mag., 1956, vol. 1, p. 34

    Article  CAS  Google Scholar 

  35. R.W. Weeks: J. Nucl. Mater., 1970, vol. 36, pp. 223–29

    Article  CAS  Google Scholar 

  36. P. Mukherjee, P.M.G. Nambissan, P. Sen, P. Barat, S.K. Bandyopadhyay: J. Nucl. Mater., 1999, vol. 273, pp. 338–48

    Article  CAS  Google Scholar 

  37. R. Sizmann: J. Nucl. Mater., 1978, vols. 69–70, pp. 386–412

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Barat.

Additional information

This article is based on a presentation given in the symposium entitled “Materials Behavior: Far from Equilibrium” as part of the Golden Jubilee Celebration of Bhabha Atomic Research Centre, which occurred December 15–16, 2006 in Mumbai, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Mukherjee, P. & Barat, P. Characterization of Irradiated Microstructure by X-Ray Diffraction Line Profile Analysis. Metall Mater Trans A 39, 1602–1609 (2008). https://doi.org/10.1007/s11661-007-9428-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9428-7

Keywords

Navigation