Skip to main content
Log in

Cryogenic and elevated temperature strengths of an Al−Zn−Mg−Cu alloy modified with Sc and Zr

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of minor additions of Sc and Zr on tensile properties of two developmental Al−Zn−Mg−Cu alloys was studied in the temperature range −196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al−Zn−Mg−Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Kaufman: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures, ASM INTERNATIONAL, Materials Park, OH, 1999.

    Google Scholar 

  2. Polmear: Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Amsterdam, 2006.

    Google Scholar 

  3. Aluminum and Aluminum Alloys, ASM Specialty Handbook, J.R. Davis, ed., ASM INTERNATIONAL, Materials Park, OH, 1993.

    Google Scholar 

  4. Y.W. Kim: in Dispersion Strengthened Aluminum Alloys, Y.W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 157–80.

    Google Scholar 

  5. J.F. Nie, A. Majumdar, and B.C. Muddle: Mater. Sci. Eng., 1994, vols. A179–A180, pp. 619–24.

    Google Scholar 

  6. F.H. Froes: Mater. Sci. Eng., 1994, vol. A184, pp. 119–33.

    Google Scholar 

  7. C.B. Fuller, D.N. Seidman, and D.C. Dunand: Scripta Mater., 1999, vol. 40, pp. 691–96.

    Article  CAS  Google Scholar 

  8. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    Article  CAS  Google Scholar 

  9. K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165–75.

    Article  CAS  Google Scholar 

  10. J. Royset and N. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19–44.

    Article  CAS  Google Scholar 

  11. V.I. Elagin: Technology of Light Alloys (Technologiya Legkikh Splavov, USSR), 1994, vol. 9, pp. 5–14.

    Google Scholar 

  12. Z. Yin, Q. Pan, Y. Zang, and F. Jiang: Mater. Sci. Eng. 2000, vol. A280, pp. 151–55.

    Article  CAS  Google Scholar 

  13. S. Lathabai and P.G. Lloyd: Acta Mater., 2002, vol. 50, pp. 4275–92.

    Article  CAS  Google Scholar 

  14. O.N. Senkov, D.B. Miracle, Y.V. Milman, J.M. Scott, D.V. Lotsko, and A.I. Sirko: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1127–32.

    Google Scholar 

  15. Y.V. Milman, A.I. Sirko, D.V. Lotsko, D.B. Miracle, and O.N. Senkov: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1217–22.

    Google Scholar 

  16. M.J. Jones and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 2149–59.

    Article  CAS  Google Scholar 

  17. O.N. Senkov, R.B. Bhat, and S.V. Senkova: in Metallic Materials with High Structural Efficiency, O.N. Senkov, D.B. Miracle, and S.A. Firstov, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 151–62.

    Chapter  Google Scholar 

  18. O.N. Senkov, R.B. Bhat, S.V. Senkova, and J.D. Schloz: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2115–26.

    Article  CAS  Google Scholar 

  19. O.N. Senkov, S.V. Senkova, M.G. Mendiratta, and D.B. Miracle: U.S. Patent 7048815, May 23, 2006.

  20. O.N. Senkov, S.V. Senkova, M.G. Mendiratta, D.B. Miracle, Y.V. Milman, D.V. Lotsko, and A.I. Sirko: U.S. Patent 7060139, June 13, 2006.

  21. S.L. Semiatin and J.J. Jonas: Formability and Workability of Metals: Plastic Instability and Flow Localization, ASM INTERNATIONAL, Materials Park, OH, 1984.

    Google Scholar 

  22. Materials Science and Technology: A Comprehensive Treatment, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., Plastic Deformation and Fracture of Materials, VCH, New York, NY, 1996, vol. 6.

    Google Scholar 

  23. R.W.K. Honeycombe: The Plastic Deformation of Metals, E. Arnold, London, 1984.

    Google Scholar 

  24. Y. Miura, C. Joh, and T. Katsube: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1031–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkova, S.V., Senkov, O.N. & Miracle, D.B. Cryogenic and elevated temperature strengths of an Al−Zn−Mg−Cu alloy modified with Sc and Zr. Metall Mater Trans A 37, 3569–3575 (2006). https://doi.org/10.1007/s11661-006-1051-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1051-5

Keywords

Navigation