Skip to main content
Log in

Adiabatic shear bands on the titanium side in the titanium/mild steel explosive cladding interface: Experiments, numerical simulation, and microstructure evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and microtexture in adiabatic shear bands (ASBs) on the titanium side in the titanium/mild steel explosive cladding interface are investigated by means of optical microscopy, scanning electron microscopy/electron backscattered diffraction (SEM/EBSD), and transmission electron microscopy (TEM). Highly elongated subgrains and fine equiaxed grains with low dislocation density are observed in the ASBs. Microtextures (25 deg, 75 deg, 0 deg), (70 deg, 45 deg, 0 deg), and (0 deg, 15 deg, 30 deg) formed within the ASBs suggest the occurrence of the recrystallization. The grain boundaries within ASBs are geometrically necessary boundaries (GNBs) with high angles. Finite element computations are performed to obtain the effective strain and temperature distributions within the ASBs under the measured boundary conditions. The rotation dynamic recrystallization (RDR) mechanism is employed to describe the kinetics of the nanograins’ formation and the recrystallized process within ASBs. During the deformation time (about 5 to 10 µs), the following processes take place: dislocations accumulate to form elongated cell structures, cell structures break up to form subgrains, and subgrains rotate and finally form recrystallized grains. The small grains within ASBs are formed during the deformation and do not undergo significant growth by grain boundary migration after deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Ezra: Principles and Practice of Explosive Metal Working, Industrial Newspapers Limited, London, 1973.

    Google Scholar 

  2. Y. Yang, X.M. Zhang, Z.H. Li, and Q.Y. Li: Acta Mater., 1996, vol. 44, pp. 561–65.

    Article  CAS  Google Scholar 

  3. Y. Yang, X. Jun, and X.Y. Yang: Trans. Nonferrous Met. Soc. China, 2004, vol. 4, pp. 670–74.

    Google Scholar 

  4. Y. Yang, Y.L. An, and B.F. Wang: Chin. J. Nonferrous Met., 2004, vol. 14, pp. 1259–63 (in Chinese).

    CAS  Google Scholar 

  5. Y. Yang, X.M. Zhang, Z.H. Li, and Q.Y. Li: Chin. J. Nonferrous Met., 1995, vol. 5, pp. 93–97 (in Chinese).

    Google Scholar 

  6. Q. Li, Y.B. Xu, and M.N. Bassim: Mater. Sci. Eng., A, 2003, vol. 385A, pp. 128–33.

    Google Scholar 

  7. P. Cizek: Mater. Sci. Eng., A, 2002, vol. 324A, pp. 214–18.

    Google Scholar 

  8. M.A. Meyers and H.R. Pak: Acta Metall. Mater., 1986, vol. 34, pp. 2493–99.

    Article  CAS  Google Scholar 

  9. U. Andrade and M.A. Meyers: Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  CAS  Google Scholar 

  10. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley: Acta Mater., 2003, vol. 51, pp. 1307–25.

    Article  CAS  Google Scholar 

  11. M.T. Perez-Prado, J.A. Hines, and K.S. Vecchio: Acta Mater., 2001, vol. 49, pp. 2905–17.

    Article  CAS  Google Scholar 

  12. A.-S. Bonnet-Lebouvier, A. Molinari, and P. Lipinski: Int. J. Solids Struct., 2002, vol. 39, pp. 4249–69.

    Article  Google Scholar 

  13. P.S. DeCarli and M.A. Meyers: in Shock Waves and High-Strain-Rate Deformation of Metals: Concepts and Applications, M.A. Meyers and L.E. Murr eds., Plenum Press, New York, NY, 1981, pp. 341–74.

    Google Scholar 

  14. B.H. Shao and K. Zhang: Basic Principal of Explosive Welding and Its Engineering Application, Dalian Science and Technology University Press, Dalian, 1987 (in Chinese)

    Google Scholar 

  15. Y. Yang, B. Wang, and J. Xiong: J. Mater. Sci., 2006, vol. 41, pp. 3501–05.

    Article  CAS  Google Scholar 

  16. D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater., 1991, vol. 25, pp. 1557–62.

    Article  CAS  Google Scholar 

  17. Y. Yang, B.F. Wang, B. Hu, K. Hu, and Z.G. Li: Mater. Sci. Eng., A, 2005, vol. 398A, pp. 291–96.

    Google Scholar 

  18. Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50, pp. 575–96.

    Article  CAS  Google Scholar 

  19. Q.L. Yong and J.G. Tian: J. Yunnan Polytechnic Univ., 1999, vol. 15, pp. 7–13 (in Chinese).

    Google Scholar 

  20. R.S. Culver: in Metallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, and J.R. Holland, eds., Plenum Press, New York, NY, 1973, pp. 519–23.

    Google Scholar 

  21. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, and Q. Xue: Mater. Sci. Eng., A, 2001, vol. 317A, pp. 204–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Wang, B.F., Xiong, J. et al. Adiabatic shear bands on the titanium side in the titanium/mild steel explosive cladding interface: Experiments, numerical simulation, and microstructure evolution. Metall Mater Trans A 37, 3131–3137 (2006). https://doi.org/10.1007/s11661-006-0193-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0193-9

Keywords

Navigation